Let $A$ be a uniformly complete almost $f$-algebra and a natural number $p\in\{3,4,\dots \}$. Then $\Pi_{p}(A)= \{a_{1}\dots a_{p}; a_{k}\in A, k=1,\dots ,p\}$ is a uniformly complete semiprime $f$-algebra under the ordering and multiplication inherited from $A$ with $\Sigma_{p}(A)=\{a^{p}; 0\leq a\in A\}$ as positive cone.
@article{119206, author = {Karim Boulabiar}, title = {Products in almost $f$-algebras}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {747-759}, zbl = {1048.06011}, mrnumber = {1800169}, language = {en}, url = {http://dml.mathdoc.fr/item/119206} }
Boulabiar, Karim. Products in almost $f$-algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 747-759. http://gdmltest.u-ga.fr/item/119206/
$FF$-algébres Archimédiennes réticulées, University of Tunis, preprint, 1988. | MR 0964828
Almost $f$-algebras and $d$-algebras, Math. Proc. Camb. Phil. Soc. 107 (1990), 287-308. (1990) | MR 1027782 | Zbl 0707.06009
Calculus in $f$-algebras, J. Austral. Math. Soc. (Series A) 37 (1984), 110-116. (1984) | MR 0742249 | Zbl 0555.06014
A relationship between two almost $f$-algebra products, Algebra Univ., to appear. | MR 1785321 | Zbl 1012.06022
Almost $f$-algebras: structure and the Dedekind completion, in Three papers on Riesz spaces and almost $f$-algebras, Technical Report, Catholic University Nijmegen, Report 9526, 1995. | Zbl 0967.46008
Averaging operators and positive contractive projections, J. Math. Appl. 113 (1986), 163-184. (1986) | MR 0826666 | Zbl 0604.47024
Riesz spaces I, North-Holland, Amsterdam, 1971.
$f$-algebras and orthomorphisms, Thesis, Leiden, 1981.
Riesz spaces II, North-Holland, Amsterdam, 1983. | MR 0704021 | Zbl 0519.46001