A $C^{\infty}$-Hopf algebra is a $C^{\infty}$-algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those $C^{\infty}$-Hopf algebras which are given by the algebra $C^{\infty}(G)$ of smooth functions on some compact Lie group $G$, thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras.
@article{119199, author = {Eva C. Farkas}, title = {Hopf algebras of smooth functions on compact Lie groups}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {651-661}, zbl = {1051.16021}, mrnumber = {1800176}, language = {en}, url = {http://dml.mathdoc.fr/item/119199} }
Farkas, Eva C. Hopf algebras of smooth functions on compact Lie groups. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 651-661. http://gdmltest.u-ga.fr/item/119199/
Hopf Algebras, Cambridge University Press, Cambridge, 1980. | MR 0594432 | Zbl 0476.16008
Groupes et algèbres de Lie, Hermann, Paris, 1972. | MR 0573068 | Zbl 1123.22005
Duality of compactological and locally compact groups, Proc. Conf. Categorical Topology Mannheim 1975, Springer Lecture Notes 540, 1976. | MR 0507225
Linear Spaces and Differentiation Theory, J. Wiley, Chichester, 1988. | MR 0961256
The Structure of Lie Groups, Holden-Day, 1965. | MR 0207883 | Zbl 0131.02702
Locally Convex Spaces, Teubner, Stuttgart, 1981. | MR 0632257 | Zbl 0466.46001
$C^{\infty}$-algebras from the functional analytic view, J. of Pure and Applied Algebra 46 (1987), 89-107. (1987) | MR 0894394
The convenient setting of global analysis, Mathematical Surveys and Monographs, Vol. 53, Amer. Math. Soc., 1997. | MR 1471480 | Zbl 0889.58001
Characters on algebras of smooth functions, Ann. Global Anal. Geom. 7 ,2 (1989), 85-92. (1989) | MR 1032327 | Zbl 0691.58020
Characterizing algebras of smooth functions on manifolds, Comment. Math. Univ. Carolinae 37 ,3 (1996), 519-521. (1996) | MR 1426917
Characteristic classes, Ann. of Math. Stud., Princeton Univ. Press, Princeton, 1974. | MR 0440554 | Zbl 1079.57504
Models for Smooth Infinitesimal Analysis, Springer, Berlin/Heidelberg/New-York, 1991. | MR 1083355 | Zbl 0715.18001
A characterization of group rings as a special class of Hopf algebras, Canad. Math. Bull. 8 ,4 (1965), 465-75. (1965) | MR 0184988 | Zbl 0143.26705
Dualität der nicht-kommutativen bikompakten Gruppen, Tohoku Math. J. 53 (1938), 1-12. (1938)
Functional Analysis, Springer, Berlin/Heidelberg/New-York, 1980. | MR 0617913 | Zbl 0830.46001