In this paper we study the behavior of the (transfinite) small inductive dimension $(trind)$ $ind$ on finite products of topological spaces. In particular we essentially improve Toulmin's estimation [T] of $trind$ for Cartesian products.
@article{119192, author = {Vitalij A. Chatyrko and Konstantin L. Kozlov}, title = {On (transfinite) small inductive dimension of products}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {597-603}, zbl = {1038.54012}, mrnumber = {1795088}, language = {en}, url = {http://dml.mathdoc.fr/item/119192} }
Chatyrko, Vitalij A.; Kozlov, Konstantin L. On (transfinite) small inductive dimension of products. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 597-603. http://gdmltest.u-ga.fr/item/119192/
On inductive dimensions of products of spaces, Moscow Univ. Math. Bull. 36 (1981), 1 19-22. (1981) | MR 0613119
Ordinal products of topological spaces, Fund. Math. 144 (1994), 95-117. (1994) | MR 1273690 | Zbl 0809.54027
On finite sum theorems for transfinite inductive dimensions, Fund. Math., to appear. | MR 1734819 | Zbl 0938.54031
Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Lemgo, 1995. | MR 1363947 | Zbl 0872.54002
On the inductive dimension of the product of bicompacta, Soviet Math. Dokl. 13 (1972), 250-254. (1972) | Zbl 0243.54032
Grundbegriffe der Mengenlehre, Göttingen, 1906.
On the dimension of the product of one-dimensional bicompacta, Soviet Math. Dokl. 9 (1968), 648-651. (1968)
Some properties of topological products (in Russian), Moscow State University, Dissertation, 1999.
On inductive dimensions, Soviet Math. Dokl. 10 (1969), 1402-1406. (1969) | MR 0254821 | Zbl 0205.52803
Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195. (1954) | MR 0065907 | Zbl 0055.41406
On transfinite dimension, Moscow Univ. Math. Bull. 48 (1993), 5 15-17. (1993) | MR 1355765
On a theorem of Hurewicz, Amer. Math. Soc. Transl. 55 (1966), 2 141-152. (1966)