We show that there exists an Abelian topological group $G$ such that the operations in $G$ cannot be extended to the Dieudonné completion $\mu G$ of the space $G$ in such a way that $G$ becomes a topological subgroup of the topological group $\mu G$. This provides a complete answer to a question of V.G. Pestov and M.G. Tkačenko, dating back to 1985. We also identify new large classes of topological groups for which such an extension is possible. The technique developed also allows to find many new solutions to the equation $\upsilon X\times \upsilon Y=\upsilon (X\times Y)$. The key role in the approach belongs to the notion of Moscow space which turns out to be very useful in the theory of $C$-embeddings and interacts especially well with homogeneity.
@article{119191, author = {Aleksander V. Arhangel'skii}, title = {Moscow spaces, Pestov-Tka\v cenko Problem, and $C$-embeddings}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {585-595}, zbl = {1038.54013}, mrnumber = {1795087}, language = {en}, url = {http://dml.mathdoc.fr/item/119191} }
Arhangel'skii, Aleksander V. Moscow spaces, Pestov-Tkačenko Problem, and $C$-embeddings. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 585-595. http://gdmltest.u-ga.fr/item/119191/
Functional tightness, $Q$-spaces, and $\tau $-embeddings, Comment. Math. Univ. Carolinae 24:1 ((1983)), 105-120. ((1983)) | MR 0703930
On a Theorem of W.W. Comfort and K.A. Ross, Comment. Math. Univ. Carolinae 40:1 (1999), 133-151. (1999) | MR 1715207
Topological groups and $C$-embeddings, submitted, 1999. | Zbl 0984.54018
Spaces in which special sets are $z$-embedded, Canad. J. Math. 28:4 (1976), 673-690. (1976) | MR 0420542 | Zbl 0359.54009
Notes on the Hewitt realcompactification of a product, Gen. Topol. and Appl. 5 (1975), 1-8. (1975) | MR 0365496 | Zbl 0323.54021
On the Hewitt realcompactification of the product space, Trans. Amer. Math. Soc. 131 (1968), 107-118. (1968) | MR 0222846
Extending continuous functions on $X\times Y$ to subsets of $\beta X\times \beta Y$, Fund. Math. 59 (1966), 1-12. (1966) | MR 0200896 | Zbl 0185.26304
Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16:3 (1966), 483-496. (1966) | MR 0207886 | Zbl 0214.28502
General Topology, PWN, Warszawa, 1977. | MR 0500780 | Zbl 0684.54001
The topological product of two pseudocompact spaces, Czechoslovak Math. J. 10 (1960), 339-349. (1960) | MR 0116304
Rings of Continuous Functions, Princeton, 1960. | MR 0116199 | Zbl 0327.46040
Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369-382. (1959) | MR 0105667 | Zbl 0089.38702
Rings of real-valued continuous functions 1., Trans. Amer. Math. Soc. 64 ((1948)), 45-99. ((1948)) | MR 0026239
Realcompactness of function spaces and $\upsilon (P\times Q)$, Gen. Topol. and Appl. 2 (1972), 165-179. (1972) | MR 0307181
Problem $3.28$, in: Unsolved Problems of Topological Algebra, Academy of Science, Moldova, Kishinev, "Shtiinca" 1985, p.18.
Uniform Structures on Topological Groups and Their Quotients, McGraw-Hill, New York, 1981.
On $\kappa $-metrizable spaces, Izv. Akad. Nauk SSSR, Ser. Matem. 43:2 (1979), 442-478. (1979) | MR 0534603
Note on $z$-, $C^\ast $-, and $C$-embedded subspaces of products, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 13 (1975), 129-132. (1975) | MR 0391005 | Zbl 0333.54008
The notion of $o$-tightness and $C$-embedded subspaces of products, Topology Appl. 15 (1983), 93-98. (1983) | MR 0676970
Subgroups, quotient groups, and products of $R$-factorizable groups, Topology Proc. 16 (1991), 201-231. (1991) | MR 1206464
Introduction to Topological Groups, Topology Appl. 86:3 (1998), 179-231. (1998) | MR 1623960
Topological groups and Dugundji spaces, Matem. Sb. 180:8 (1989), 1092-1118. (1989) | MR 1019483