Scaling limit for trap models on ℤ d
Ben Arous, Gérard ; Černý, Jiří
Ann. Probab., Tome 35 (2007) no. 1, p. 2356-2384 / Harvested from Project Euclid
We give the “quenched” scaling limit of Bouchaud’s trap model in d≥2. This scaling limit is the fractional-kinetics process, that is the time change of a d-dimensional Brownian motion by the inverse of an independent α-stable subordinator.
Publié le : 2007-11-14
Classification:  Trap model,  scaling limit,  Lévy process,  random walk,  fractional kinetics,  subordination,  60K37,  60G52,  60F17,  82D30
@article{1191860424,
     author = {Ben Arous, G\'erard and \v Cern\'y, Ji\v r\'\i },
     title = {Scaling limit for trap models on $\mathbb{Z}$<sup>
 d
</sup>},
     journal = {Ann. Probab.},
     volume = {35},
     number = {1},
     year = {2007},
     pages = { 2356-2384},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1191860424}
}
Ben Arous, Gérard; Černý, Jiří. Scaling limit for trap models on ℤ
 d
. Ann. Probab., Tome 35 (2007) no. 1, pp.  2356-2384. http://gdmltest.u-ga.fr/item/1191860424/