We give the “quenched” scaling limit of Bouchaud’s trap model in d≥2. This scaling limit is the fractional-kinetics process, that is the time change of a d-dimensional Brownian motion by the inverse of an independent α-stable subordinator.
Publié le : 2007-11-14
Classification:
Trap model,
scaling limit,
Lévy process,
random walk,
fractional kinetics,
subordination,
60K37,
60G52,
60F17,
82D30
@article{1191860424,
author = {Ben Arous, G\'erard and \v Cern\'y, Ji\v r\'\i },
title = {Scaling limit for trap models on $\mathbb{Z}$<sup>
d
</sup>},
journal = {Ann. Probab.},
volume = {35},
number = {1},
year = {2007},
pages = { 2356-2384},
language = {en},
url = {http://dml.mathdoc.fr/item/1191860424}
}
Ben Arous, Gérard; Černý, Jiří. Scaling limit for trap models on ℤ
d
. Ann. Probab., Tome 35 (2007) no. 1, pp. 2356-2384. http://gdmltest.u-ga.fr/item/1191860424/