We characterize the holomorphic mappings $f$ between complex Ba\-nach spaces that may be written in the form $f=T\circ g$, where $g$ is another holomorphic mapping and $T$ belongs to a closed surjective operator ideal.
@article{119182, author = {Manuel Gonzalez and Joaqu\'\i n M. Guti\'errez}, title = {Surjective factorization of holomorphic mappings}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {469-476}, zbl = {1040.46033}, mrnumber = {1795078}, language = {en}, url = {http://dml.mathdoc.fr/item/119182} }
Gonzalez, Manuel; Gutiérrez, Joaquín M. Surjective factorization of holomorphic mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 469-476. http://gdmltest.u-ga.fr/item/119182/
Weakly compact multilinear mappings, Proc. Edinburgh Math. Soc. 40 (1997), 181-192. (1997) | MR 1437822 | Zbl 0901.46038
Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30. (1976) | MR 0402504 | Zbl 0328.46046
Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58. (1984) | MR 0774176 | Zbl 0601.47019
Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. (1974) | MR 0355536
Complex Analysis in Locally Convex Spaces, Math. Studies 57, North-Holland, Amsterdam, 1981. | MR 0640093 | Zbl 0484.46044
Grothendieck operators on tensor products, Proc. Amer. Math. Soc. 125 (1997), 2285-2291. (1997) | MR 1372028
Ein Faktorisierungssatz für multilineare Funktionale, Math. Nachr. 134 (1987), 149-159. (1987) | MR 0918674 | Zbl 0651.46070
Dual results of factorization for operators, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 3-11. (1993) | MR 1207890
Factorization of weakly continuous holomorphic mappings, Studia Math. 118 (1996), 117-133. (1996) | MR 1389759
Injective factorization of holomorphic mappings, Proc. Amer. Math. Soc. 127 (1999), 1715-1721. (1999) | MR 1610897
Lifting results for sequences in Banach spaces, Math. Proc. Cambridge Philos. Soc. 105 (1989), 117-121. (1989) | MR 0966145
Closed operator ideals and interpolation, J. Funct. Anal. 35 (1980), 397-411. (1980) | MR 0563562 | Zbl 0439.47029
Weakly compact operators on $C(K)$ and $C^*$-algebras, in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Sci., Singapore, 1988, pp.263-299. | MR 0979519 | Zbl 0757.47020
On weakly compact operators on $C(K)$-spaces, in: N. Kalton and E. Saab (eds.), Banach Spaces (Proc., Missouri 1984), Lecture Notes in Math. 1166, Springer, Berlin, 1985, pp.80-88. | MR 0827762
On compact and bounding holomorphic mappings, Proc. Amer. Math. Soc. 105 (1989), 356-361. (1989) | MR 0933517
Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amsterdam, 1986. | MR 0842435 | Zbl 0586.46040
Topology on Spaces of Holomorphic Mappings, Ergeb. Math. Grenzgeb. 47, Springer, Berlin, 1969. | MR 0254579 | Zbl 0172.39902
Operator Ideals, North-Holland Math. Library 20, North-Holland, Amsterdam, 1980. | MR 0582655 | Zbl 1012.47001
Asplund operators and holomorphic maps, Manuscripta Math. 75 (1992), 25-34. (1992) | MR 1156212 | Zbl 0805.46044
Weakly compact holomorphic mappings on Banach spaces, Pacific J. Math. 131 (1988), 179-190. (1988) | MR 0917872 | Zbl 0605.46038
Generating systems of sets and quotients of surjective operator ideals, Math. Nachr. 99 (1980), 13-27. (1980) | MR 0637639 | Zbl 0474.47019
On a class of Banach spaces, Studia Math. 60 (1977), 11-13. (1977) | MR 0430755 | Zbl 0354.46012