Let f be a non-zero positive vector of a Banach lattice L, and let T be a positive linear operator on L with the spectral radius r(T). We find some groups of assumptions on L, T and f under which the inequalities \sup \{c \geq 0 : T f \geq c \, f\} \leq r(T) \leq \inf \{c \geq 0 : T f \leq c \, f\}
@article{119181, author = {Roman Drnov\v sek}, title = {Bounds for the spectral radius of positive operators}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {459-467}, zbl = {1040.46021}, mrnumber = {1795077}, language = {en}, url = {http://dml.mathdoc.fr/item/119181} }
Drnovšek, Roman. Bounds for the spectral radius of positive operators. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 459-467. http://gdmltest.u-ga.fr/item/119181/
Positive Operators, Academic Press, Orlando, 1985. | MR 0809372 | Zbl 1098.47001
On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator, Linear Algebra Appl. 120 193-205 (1989). (1989) | MR 1010057
On the local spectral radius of a nonnegative element with respect to an irreducible operator, Acta Sci. Math. 55 155-166 (1991). (1991) | MR 1124954
A note on the theorems of Jentzsch-Perron and Frobenius, Indagationes Math. 49 381-391 (1987). (1987) | MR 0922442 | Zbl 0634.47034
The spectral radius of a product of nonnegative matrices, Linear Algebra Appl. 141 227-240 (1990). (1990) | MR 1076115 | Zbl 0712.15013
Nested bounds for the spectral radius, Numer. Math. 14 49-70 (1969). (1969) | MR 0257779 | Zbl 0221.65063
Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math. 19 607-628 (1970). (1970) | MR 0415405 | Zbl 0219.47022
Collatz-Wielandt numbers in general partially ordered spaces, Linear Algebra Appl. 173 165-180 (1992). (1992) | MR 1170509 | Zbl 0777.47003
Banach lattices and positive operators, (Grundlehren Math. Wiss. Bd. 215), Springer-Verlag, New York, 1974. | MR 0423039 | Zbl 0296.47023
A minimax theorem for irreducible compact operators in L^p-spaces, Israel J. Math. 48 196-204 (1984). (1984) | MR 0770701
Unzerlegbare, nicht-negative Matrizen,, Math. Z. 52 642-648 (1950). (1950) | MR 0035265 | Zbl 0035.29101
Riesz Spaces II, North Holland, Amsterdam, 1983. | MR 0704021 | Zbl 0519.46001