Let $f$ be a non-zero positive vector of a Banach lattice $L$, and let $T$ be a positive linear operator on $L$ with the spectral radius $r(T)$. We find some groups of assumptions on $L$, $T$ and $f$ under which the inequalities $$ \sup \{c \geq 0 : T f \geq c \, f\} \leq r(T) \leq \inf \{c \geq 0 : T f \leq c \, f\} $$ hold. An application of our results gives simple upper and lower bounds for the spectral radius of a product of positive operators in terms of positive eigenvectors corresponding to the spectral radii of given operators. We thus extend the matrix result obtained by Johnson and Bru which was the motivation for this paper.
@article{119181, author = {Roman Drnov\v sek}, title = {Bounds for the spectral radius of positive operators}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {459-467}, zbl = {1040.46021}, mrnumber = {1795077}, language = {en}, url = {http://dml.mathdoc.fr/item/119181} }
Drnovšek, Roman. Bounds for the spectral radius of positive operators. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 459-467. http://gdmltest.u-ga.fr/item/119181/
Positive Operators, Academic Press, Orlando, 1985. | MR 0809372 | Zbl 1098.47001
On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator, Linear Algebra Appl. 120 193-205 (1989). (1989) | MR 1010057
On the local spectral radius of a nonnegative element with respect to an irreducible operator, Acta Sci. Math. 55 155-166 (1991). (1991) | MR 1124954
A note on the theorems of Jentzsch-Perron and Frobenius, Indagationes Math. 49 381-391 (1987). (1987) | MR 0922442 | Zbl 0634.47034
The spectral radius of a product of nonnegative matrices, Linear Algebra Appl. 141 227-240 (1990). (1990) | MR 1076115 | Zbl 0712.15013
Nested bounds for the spectral radius, Numer. Math. 14 49-70 (1969). (1969) | MR 0257779 | Zbl 0221.65063
Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math. 19 607-628 (1970). (1970) | MR 0415405 | Zbl 0219.47022
Collatz-Wielandt numbers in general partially ordered spaces, Linear Algebra Appl. 173 165-180 (1992). (1992) | MR 1170509 | Zbl 0777.47003
Banach lattices and positive operators, (Grundlehren Math. Wiss. Bd. 215), Springer-Verlag, New York, 1974. | MR 0423039 | Zbl 0296.47023
A minimax theorem for irreducible compact operators in $L^p$-spaces, Israel J. Math. 48 196-204 (1984). (1984) | MR 0770701
Unzerlegbare, nicht-negative Matrizen,, Math. Z. 52 642-648 (1950). (1950) | MR 0035265 | Zbl 0035.29101
Riesz Spaces II, North Holland, Amsterdam, 1983. | MR 0704021 | Zbl 0519.46001