It is shown that every $\omega$-graded module over $k[X]$ is a direct sum of cyclics. The invariants for such modules are exactly the smooth invariants of valuated abelian $p$-groups.
@article{119179, author = {Fred Richman}, title = {Smooth invariants and $\omega$-graded modules over $k[X]$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {445-448}, zbl = {1038.16013}, mrnumber = {1795075}, language = {en}, url = {http://dml.mathdoc.fr/item/119179} }
Richman, Fred. Smooth invariants and $\omega$-graded modules over $k[X]$. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 445-448. http://gdmltest.u-ga.fr/item/119179/
Finite valuated $p$-groups, Abelian Group Theory (Honolulu 1983), pp.471-507, Lecture Notes in Mathematics 1006, Springer-Verlag. | MR 0722640 | Zbl 0518.20045
Existence theorems for Warfield groups, Trans. Amer. Math. Soc. 235 (1978), 345-362. (1978) | MR 0473044 | Zbl 0368.20034
Subgroups of bounded abelian groups, Abelian Groups and Modules (Udine 1984), pp.17-35, CISM Courses and Lectures 287, Springer-Verlag. | MR 0789807 | Zbl 0568.20051
Valuated groups, J. Algebra 56 (1979), 145-167. (1979) | MR 0527162 | Zbl 0401.20049