Smooth invariants and $\omega$-graded modules over $k[X]$
Richman, Fred
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000), p. 445-448 / Harvested from Czech Digital Mathematics Library

It is shown that every $\omega$-graded module over $k[X]$ is a direct sum of cyclics. The invariants for such modules are exactly the smooth invariants of valuated abelian $p$-groups.

Publié le : 2000-01-01
Classification:  13F20,  16G20,  16W50,  20K10
@article{119179,
     author = {Fred Richman},
     title = {Smooth invariants and $\omega$-graded modules over $k[X]$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {41},
     year = {2000},
     pages = {445-448},
     zbl = {1038.16013},
     mrnumber = {1795075},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119179}
}
Richman, Fred. Smooth invariants and $\omega$-graded modules over $k[X]$. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 445-448. http://gdmltest.u-ga.fr/item/119179/

Beers D.; Hunter R.; Walker E.A. Finite valuated $p$-groups, Abelian Group Theory (Honolulu 1983), pp.471-507, Lecture Notes in Mathematics 1006, Springer-Verlag. | MR 0722640 | Zbl 0518.20045

Hunter R.; Richman F.; Walker E.A. Existence theorems for Warfield groups, Trans. Amer. Math. Soc. 235 (1978), 345-362. (1978) | MR 0473044 | Zbl 0368.20034

Hunter R.; Richman F.; Walker E.A. Subgroups of bounded abelian groups, Abelian Groups and Modules (Udine 1984), pp.17-35, CISM Courses and Lectures 287, Springer-Verlag. | MR 0789807 | Zbl 0568.20051

Richman F.; Walker E.A. Valuated groups, J. Algebra 56 (1979), 145-167. (1979) | MR 0527162 | Zbl 0401.20049