A pointed quasigroup is said to be semicentral if it is principally isotopic to a group via a permutation on one side and a group automorphism on the other. Convex combinations of permutation matrices given by the one-sided multiplications in a semicentral quasigroup then yield doubly stochastic transition matrices of finite Markov chains in which the entropic behaviour at any time is independent of the initial state.
@article{119174, author = {Jonathan D. H. Smith}, title = {A class of quasigroups solving a problem of ergodic theory}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {409-414}, zbl = {1038.20054}, mrnumber = {1780882}, language = {en}, url = {http://dml.mathdoc.fr/item/119174} }
Smith, Jonathan D. H. A class of quasigroups solving a problem of ergodic theory. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 409-414. http://gdmltest.u-ga.fr/item/119174/
Information Theory, Wiley New York, NY (1965). (1965) | MR 0229475 | Zbl 0141.34904
The nuclei and center of linear quasigroups (in Russian), Izv. Akad. Nauk Respub. Moldova Mat. 3 (1991), 37-42. (1991) | MR 1174875
One-sided T-quasigroups and irreducible balanced identities, Quasigroups Related Systems 1 (1994), 8-21. (1994) | MR 1327942
Quasigroups and Loops: Theory and Applications, Heldermann Berlin (1990). (1990) | MR 1125806 | Zbl 0719.20036
An Introduction to Probability Theory and its Applications, Volume I, Wiley New York, NY (1950). (1950) | MR 0038583
On the increase of conditional entropy in Markov chains, in ``Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Volume A'', Academia, Prague, 1988, pp.391-396. | MR 1136296 | Zbl 0707.60059
Quasigroups, isotopic to a group, Comment. Math. Univ. Carolinae 16 (1975), 59-76. (1975) | MR 0367103
T-quasigroups I, II, Acta Univ. Carolinae - Math. et Phys. 12 (1971), 1 39-49 and no. 2, 31-49. (1971) | MR 0320206
Mal'cev Varieties, Springer Berlin (1976). (1976) | MR 0432511 | Zbl 0344.08002
Post-Modern Algebra, Wiley New York, NY (1999). (1999) | MR 1673047 | Zbl 0946.00001