On the unit sphere $\Bbb S$ in a real Hilbert space $\bold H$, we derive a binary operation $\odot $ such that $(\Bbb S,\odot )$ is a power-associative Kikkawa left loop with two-sided identity $\bold e_{0}$, i.e., it has the left inverse, automorphic inverse, and $A_l$ properties. The operation $\odot $ is compatible with the symmetric space structure of $\Bbb S$. $(\Bbb S,\odot )$ is not a loop, and the right translations which fail to be injective are easily characterized. $(\Bbb S,\odot )$ satisfies the left power alternative and left Bol identities ``almost everywhere'' but not everywhere. Left translations are everywhere analytic; right translations are analytic except at $-\bold e_{0}$ where they have a nonremovable discontinuity. The orthogonal group $O(\bold H)$ is a semidirect product of $(\Bbb S,\odot )$ with its automorphism group. The left loop structure of $(\Bbb S,\odot )$ gives some insight into spherical geometry.
@article{119167, author = {Michael K. Kinyon}, title = {Global left loop structures on spheres}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {325-346}, zbl = {1041.20044}, mrnumber = {1780875}, language = {en}, url = {http://dml.mathdoc.fr/item/119167} }
Kinyon, Michael K. Global left loop structures on spheres. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 325-346. http://gdmltest.u-ga.fr/item/119167/
A Survey of Binary Systems, (3rd printing, corrected), Springer-Verlag, Berlin, 1971. | MR 0093552 | Zbl 0141.01401
Quasigroups and Loops: Theory and Applications, Sigma Series in Pure Mathematics, Vol. 8, Heldermann Verlag, Berlin, 1990. | MR 1125806 | Zbl 0719.20036
Reflection geometries over loops, Results Math. 32 (1997), 61-65. (1997) | MR 1464673 | Zbl 0922.51007
Point-reflection geometries, geometric K-loops and unitary geometries, Results Math. 32 (1997), 66-72. (1997) | MR 1464674 | Zbl 0922.51006
The reflection structures of generalized co-Minkowski spaces leading to K-loops, Results Math. 32 (1997), 73-79. (1997) | MR 1464675 | Zbl 0923.51014
On loops of odd order, J. Algebra 1 (1964), 374-396. (1964) | MR 0175991 | Zbl 0123.01502
Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. | MR 0514561 | Zbl 0993.53002
Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und $2$-Strukturen mit Rechtecksaxiom, Abh. Math. Sem. Univ. Hamburg 32 (1968), 191-206. (1968) | MR 0240715 | Zbl 0162.24101
Theory of $K$-loops, Habilitationsschrift, Universität Hamburg, Hamburg, Germany, 1998. | Zbl 0997.20059
On some quasigroups of algebraic models of symmetric spaces, Mem. Fac. Lit. Sci. Shimane Univ. (Nat. Sci.) 6 (1973), 9-13. (1973) | MR 0327962 | Zbl 0264.53028
The geometry of homogeneous Lie loops, Hiroshima Math. J. 5 (1975), 141-179. (1975) | MR 0383301
Loops and semidirect products, to appear in Comm. Algebra. | MR 1772003 | Zbl 0974.20049
Riemannian Geometry, 2nd ed., Studies in Mathematics I, de Gruyter, New York, 1995. | MR 1330918 | Zbl 1073.53006
A construction of Bruck loops, Comment. Math. Univ. Carolinae 25 (1984), 591-595. (1984) | MR 0782010 | Zbl 0563.20053
Inner mappings of Bol loops, Math. Proc. Cambridge Philos. Soc. 123 (1998), 53-57. (1998) | MR 1474864
Symmetric Spaces, vol. 1, Benjamin, New York, 1969. | Zbl 0228.53034
Quasigroups and differential geometry, Chapter XII in 2, pp.357-430. | MR 1125818 | Zbl 0721.53018
Smooth loops, generalized coherent states and geometric phases, Int. J. Theor. Phys. 36 (1997), 1981-1989. (1997) | MR 1476347 | Zbl 0883.22020
Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, Vol. 7, Heldermann Verlag, Berlin, 1990. | MR 1125767 | Zbl 0715.20043
Bol loops, Ph.D. Dissertation, University of Wisconsin, Madison, Wisconsin, 1964. | Zbl 0803.20053
A loop-theoretic study of right-sided quasigroups, Ann. Soc. Sci. Bruxelles Sér. I 93 (1979), 7-16. (1979) | MR 0552166 | Zbl 0414.20058
On the equivalence of categories of loops and homogeneous spaces, Soviet Math. Dokl. 13 (1972), 970-974. (1972) | Zbl 0291.18006
Methods of nonassociative algebra in differential geometry (Russian), Supplement to the Russian transl. of S. Kobayashi, K. Nomizu, ``Foundations of Differential Geometry'', vol. 1, Nauka, Moscow, 1981, pp. 293-339. | MR 0628734
Smooth Quasigroups and Loops, Kluwer Academic Press, Dordrecht, 1999. | MR 1727714 | Zbl 1038.20051
On the notion of gyrogroup, Aequationes Math. 56 (1998), 11-17. (1998) | MR 1628291 | Zbl 0923.20051
A left loop on the $15$-sphere, J. Algebra 176 (1995), 128-138. (1995) | MR 1345298 | Zbl 0841.17004
The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Results Math. 16 (1989), 168-179. (1989) | MR 1020224 | Zbl 0693.20067
Weakly associative groups, Results Math. 17 (1990), 149-168. (1990) | MR 1039282 | Zbl 0699.20055
Thomas precession and its associated grouplike structure, Amer. J. Phys. 59 (1991), 824-834. (1991) | MR 1126776
The holomorphic automorphism group of the complex disk, Aequationes Math. 47 (1994), 240-254. (1994) | MR 1268034 | Zbl 0799.20032
Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics, Found. Phys. 27 (1997), 881-951. (1997) | MR 1477047