Connected transversals -- the Zassenhaus case
Kepka, Tomáš ; Němec, Petr
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000), p. 299-300 / Harvested from Czech Digital Mathematics Library

In this short note, it is shown that if $A,B$ are $H$-connected transversals for a finite subgroup $H$ of an infinite group $G$ such that the index of $H$ in $G$ is at least 3 and $H\cap H^u\cap H^v=1$ whenever $u,v\in G\setminus H$ and $uv^{-1}\in G\setminus H$ then $A=B$ is a normal abelian subgroup of $G$.

Publié le : 2000-01-01
Classification:  20D60,  20E07,  20F12,  20F99,  20N05
@article{119165,
     author = {Tom\'a\v s Kepka and Petr N\v emec},
     title = {Connected transversals -- the Zassenhaus case},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {41},
     year = {2000},
     pages = {299-300},
     zbl = {1038.20022},
     mrnumber = {1780873},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119165}
}
Kepka, Tomáš; Němec, Petr. Connected transversals -- the Zassenhaus case. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 299-300. http://gdmltest.u-ga.fr/item/119165/

Drápal A. Multiplication groups of free loops I, Czech. Math. J. 46 (121) (1996), 121-131. (1996) | MR 1371694

Drápal A. Multiplication groups of free loops II, Czech. Math. J. 46 (121) (1996), 201-220. (1996) | MR 1388610

Drápal A. Multiplication groups of finite loops that fix at most two points, submitted.