In this short note, it is shown that if $A,B$ are $H$-connected transversals for a finite subgroup $H$ of an infinite group $G$ such that the index of $H$ in $G$ is at least 3 and $H\cap H^u\cap H^v=1$ whenever $u,v\in G\setminus H$ and $uv^{-1}\in G\setminus H$ then $A=B$ is a normal abelian subgroup of $G$.
@article{119165, author = {Tom\'a\v s Kepka and Petr N\v emec}, title = {Connected transversals -- the Zassenhaus case}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {299-300}, zbl = {1038.20022}, mrnumber = {1780873}, language = {en}, url = {http://dml.mathdoc.fr/item/119165} }
Kepka, Tomáš; Němec, Petr. Connected transversals -- the Zassenhaus case. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 299-300. http://gdmltest.u-ga.fr/item/119165/
Multiplication groups of free loops I, Czech. Math. J. 46 (121) (1996), 121-131. (1996) | MR 1371694
Multiplication groups of free loops II, Czech. Math. J. 46 (121) (1996), 201-220. (1996) | MR 1388610
Multiplication groups of finite loops that fix at most two points, submitted.