The paper studies multilinear algebras, known as comtrans algebras, that are determined by so-called $T$-Hermitian matrices over an arbitrary field. The main result of this paper shows that the comtrans algebra of $n$-dimensional $T$-Hermitian matrices furnishes a simple comtrans algebra.
@article{119161, author = {T. S. R. Fuad and Jon D. Phillips and Xiaorong Shen and Jonathan D. H. Smith}, title = {Simple multilinear algebras and hermitian operators}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {251-259}, zbl = {1037.17005}, mrnumber = {1780869}, language = {en}, url = {http://dml.mathdoc.fr/item/119161} }
Fuad, T. S. R.; Phillips, Jon D.; Shen, Xiaorong; Smith, Jonathan D. H. Simple multilinear algebras and hermitian operators. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 251-259. http://gdmltest.u-ga.fr/item/119161/
Quasigroups and Loops: Theory and Applications, Heldermann, Berlin, 1990. | MR 1125806 | Zbl 0719.20036
Theory of Multicodimensional $(n+1)$-Webs, Kluwer, Dordrecht, 1988. | MR 0998774 | Zbl 0668.53001
The Principles of Quantum Mechanics, Oxford, 1967. | MR 0023198
Algebraic Problems of Mathematical and Theoretical Physics (in Russian), Moscow, 1974; German translation: Berlin, 1979. | MR 0554236
Simple multilinear algebras, rectangular matrices and Lie algebras, J. Algebra 160 (1993), 424-433. (1993) | MR 1244921 | Zbl 0811.17024
Comtrans algebras and bilinear forms, Arch. Math 59 (1992), 327-333. (1992) | MR 1179457 | Zbl 0739.17010
Representation theorem of comtrans algebras, J. Pure Appl. Algebra 80 (1992), 177-195. (1992) | MR 1172725
Simple algebras of hermitian operators, Arch. Math. 65 (1995), 534-539. (1995) | MR 1360074 | Zbl 0853.17021
Multilinear algebras and Lie's Theorem for formal n-loops, Arch. Math. 51 (1988), 169-177. (1988) | MR 0959394 | Zbl 0627.22003
Comtrans algebras and their physical applications, Banach Center Publ. 28 (1993), 319-326. (1993) | MR 1446291 | Zbl 0811.17025