We prove that if there exists a Cohen real over a model, then the family of perfect sets coded in the model has a disjoint refinement by perfect sets.
@article{119152, author = {Miroslav Repick\'y}, title = {Cohen real and disjoint refinement of perfect sets}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {179-181}, zbl = {1035.03027}, mrnumber = {1756938}, language = {en}, url = {http://dml.mathdoc.fr/item/119152} }
Repický, Miroslav. Cohen real and disjoint refinement of perfect sets. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 179-181. http://gdmltest.u-ga.fr/item/119152/
Disjoint refinement, in: Handbook of Boolean Algebras2 J.D. Monk and R. Bonnet North-Holland Amsterdam (1989), 334-386. (1989) | MR 0991597
Sacks forcing, Laver forcing, and Martin's axiom, Arch. Math. Logic 31 (1992), 145-161. (1992) | MR 1147737 | Zbl 0755.03026