The problem of Y. Tanaka [10] of characterizing the topologies whose products with each first-countable space are sequential, is solved. The spaces that answer the problem are called strongly sequential spaces in analogy to strongly Fréchet spaces.
@article{119149, author = {Fr\'ed\'eric Mynard}, title = {Strongly sequential spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {143-153}, zbl = {1090.54006}, mrnumber = {1756935}, language = {en}, url = {http://dml.mathdoc.fr/item/119149} }
Mynard, Frédéric. Strongly sequential spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 143-153. http://gdmltest.u-ga.fr/item/119149/
Espaces d'Antoine et semi-espaces d'Antoine, Cahiers de Topologies et Géométrie Différentielle 16 107-133 (1975). (1975) | MR 0394529 | Zbl 0315.54005
Convergences, Ann. Inst. Fourier 23 55-112 (1947). (1947) | MR 0025716
Convergence-theoretic approach to quotient quest, Topology Appl. 73 1-21 (1996). (1996) | MR 1413721 | Zbl 0862.54001
Convergence theoretic mechanisms behind product theorems, to appear in Topology Appl. | MR 1780899 | Zbl 0953.54002
Topology, PWN, 1977. | Zbl 0932.01059
A quintuple quotient quest, Gen. Topology Appl. 2 91-138 (1972). (1972) | MR 0309045 | Zbl 0238.54009
Local compactness and cartesian product of quotient maps and $k$-spaces, Ann. Inst. Fourier (Grenoble) 19 281-286 (1968). (1968) | MR 0244943
Coreflectively modified continuous duality applied to classical product theorems, to appear. | MR 1890032 | Zbl 1007.54008
Biquotient maps, countably bisequential spaces and related topics, Topology Appl. 4 1-28 (1974). (1974) | MR 0365463
Products of sequential spaces, Proc. Amer. Math. Soc. 54 371-375 (1976). (1976) | MR 0397665 | Zbl 0292.54025
Necessary and sufficient conditions for products of $k$-spaces, Topology Proc. 14 281-312 (1989). (1989) | MR 1107729 | Zbl 0727.54012