Centered-Lindelöfness versus star-Lindelöfness
Bonanzinga, Maddalena ; Matveev, Mikhail Valerʹevich
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000), p. 111-122 / Harvested from Czech Digital Mathematics Library

We discuss various generalizations of the class of Lindelöf spaces and study the difference between two of these generalizations, the classes of star-Lindelöf and centered-Lindelöf spaces.

Publié le : 2000-01-01
Classification:  54D20,  54G20
@article{119145,
     author = {Maddalena Bonanzinga and Mikhail Valer'evich Matveev},
     title = {Centered-Lindel\"ofness versus star-Lindel\"ofness},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {41},
     year = {2000},
     pages = {111-122},
     zbl = {1037.54502},
     mrnumber = {1756931},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119145}
}
Bonanzinga, Maddalena; Matveev, Mikhail Valerʹevich. Centered-Lindelöfness versus star-Lindelöfness. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 111-122. http://gdmltest.u-ga.fr/item/119145/

Arhangel'Skii A.V. Topological function spaces, Moskov. Gos. Univ. Publ., Moscow, 1989 (in Russian); English translation in: Mathematics and its Applications (Soviet Series) 78, Kluwer Academic Publishers Group, Dordrecht, 1992. | MR 1144519

Arhangel'Skii A.V. $C_p$-theory, Recent Progress in General Topology, M. Hušek and J. van Mill Eds., Elsevier Sci. Pub. B.V., 1992, pp.1-56. | Zbl 0932.54015

Arhangel'Skii A.V.; Ponomarev V.I. Foundations of General Topology: Problems and Exercises, Moscow, Nauka Publ., 1974 (in Russian); English translation in: Mathematics and its applications, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster 13 (1984). | MR 0785749

Asanov M.O. On cardinal invariants of the spaces of all continuous functions (in Russian), Contemporary Topology and Set Theory, Izhevsk 2 (1979), 8-12. (1979)

Berner A.J. Spaces with dense conditionally compact subsets, Proc. Amer. Mat. Soc. 81 (1979), 137-142. (1979) | MR 0589156

Beshimov R.B. Weakly separable spaces and mappings, Thesis, Moscow State University, 1994.

Beshimov R.B. Some properties of weakly separable spaces Uzbek. Mat. Zh., 1 (1994), 7-11. (1994) | MR 1350283

Bonanzinga M. Star-Lindelöf and absolutely star-Lindelöf spaces, Questions Answers Gen. Topology 16 (1998), 79-104. (1998) | MR 1642032 | Zbl 0931.54019

Van Douwen E.K. Density of compactifications, Set-Theoretic Topology, G.M. Reed Ed., N.Y., 1977, pp.97-110. | MR 0442887 | Zbl 0379.54006

Van Douwen E.K. The Pixley-Roy topology on spaces of subsets, Set-Theoretic Topology, G.M. Reed Ed., N.Y., 1977, pp.111-134. | MR 0440489 | Zbl 0372.54006

Van Douwen E.K.; Reed G.M.; Roscoe A.W.; Tree I.J. Star covering properties, Topology Appl. 39 (1991), 71-103. (1991) | MR 1103993 | Zbl 0743.54007

Dow A.; Junnila H.; Pelant J. Weak covering properties of weak topologies, Proc. London Math. Soc. (3) 75 (1997), 2 349-368. (1997) | MR 1455860 | Zbl 0886.54014

Engelking R. General Topology, Warszawa, 1977. | MR 0500780 | Zbl 0684.54001

Fleischman W.M. A new extension of countable compactness, Fund. Math. 67 (1970), 1-9. (1970) | MR 0264608 | Zbl 0194.54601

Ikenaga S. A class which contains Lindelöf spaces, separable spaces and countably compact spaces, Mem. of Numazu College of Tech. 18 (1983), 105-108. (1983)

Ikenaga S. Topological concept between Lindelöf and Pseudo-Lindelöf, Res. Rep. of Nara Nat. College of Technology 26 (1990), 103-108. (1990)

Levy R.; Mcdowell R.H. Dense subsets of $\beta X$, Proc. Amer. Mat. Soc. 507 (1975), 426-429. (1975) | MR 0370506 | Zbl 0313.54025

Matveev M.V. Pseudocompact and related spaces, Thesis, Moscow State University, 1985.

Matveev M.V. A survey on star covering properties Topology Atlas, preprint No 330 (1998) http://www.unipissing.ca/topology/v/a/a/a/19.htm, .

Matveev M.V.; Uspenskii V.V. On star-compact spaces with a $G_{\delta}$-diagonal, Zbornik Radova Filosofskogo Fakulteta v Nisu, Ser. Mat. 6:2 (1992), 281-290. (1992) | MR 1244780 | Zbl 0911.54020

Miller A.W. Special subsets of the real line, Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan Eds., Elsevier Sci. Publ., 1984, pp.201-233. | MR 0776624 | Zbl 0588.54035

Pixley C.; Roy P. Uncompletable Moore spaces, Proceedings of the Auburn Topology Conference, Auburn Univ., Auburn, Alabama, 1969, pp.75-85. | MR 0397671 | Zbl 0259.54022

Pol R. A theorem on weak topology on $C(X)$ for compact scattered $X$, Fund. Math. 106 2 (1980), 135-140. (1980) | MR 0580591

Przymusiński T.; Tall F.D. The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition, Fund. Math 85 (1974), 291-297. (1974) | MR 0367934

Reznichenko E.A. A pseudocompact space in which only the sets of full cardinality are not closed and not discrete, Vestnik MGU, Ser. I: Matem., Mekh., 1989, No. 6, pp.69-70 (in Russian); English translation in: Moscow Univ. Math. Bull. 44 (1989) 70-71. | MR 1065983

Scott B.M. Pseudocompact, metacompact spaces are compact, Topology Proc. 4 (1979), 577-587. (1979) | MR 0598295

Tall F.D. Normality versus collectionwise normality, Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan Eds., Elsevier Sci. Publ., 1984, pp.685-732. | MR 0776634 | Zbl 0552.54011