Limit points of arithmetic means of sequences in Banach spaces
Lávička, Roman
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000), p. 97-106 / Harvested from Czech Digital Mathematics Library

We shall prove the following statements: Given a sequence $\{a_n\}_{n=1}^{\infty}$ in a Banach space $\bold X$ enjoying the weak Banach-Saks property, there is a subsequence (or a permutation) $\{b_n\}_{n=1}^{\infty}$ of the sequence $\{a_n\}_{n=1}^{\infty}$ such that $$ \lim_{n\to\infty} {1\over n}\sum_{j=1}^n b_j=a $$ whenever $a$ belongs to the closed convex hull of the set of weak limit points of $\{a_n\}_{n=1}^{\infty}$. In case $\bold X$ has the Banach-Saks property and $\{a_n\}_{n=1}^{\infty}$ is bounded the converse assertion holds too. A characterization of reflexive spaces in terms of limit points and cores of bounded sequences is also given. The motivation for the problems investigated goes back to Lévy laplacian from potential theory in Hilbert spaces.

Publié le : 2000-01-01
Classification:  40G05,  40H05,  46B20,  47F05
@article{119143,
     author = {Roman L\'avi\v cka},
     title = {Limit points of arithmetic means of sequences in Banach spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {41},
     year = {2000},
     pages = {97-106},
     zbl = {1040.46013},
     mrnumber = {1756929},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119143}
}
Lávička, Roman. Limit points of arithmetic means of sequences in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 97-106. http://gdmltest.u-ga.fr/item/119143/

Cooke R.G. Infinite Matrices and Sequence Spaces, Macmillan, London, 1950. | MR 0040451 | Zbl 0132.28901

Conway J.B. A Course in Functional Analysis, 2-nd ed., Springer-Verlag, New York/Berlin, 1990. | MR 1070713 | Zbl 0706.46003

Diestel J. Geometry of Banach Spaces - Selected Topics, Springer-Verlag, New York/Berlin, 1975. | MR 0461094 | Zbl 0466.46021

Diestel J. Sequences and Series in Banach Spaces, Springer-Verlag, New York/Berlin, 1984. | MR 0737004

Erdös P.; Magidor M. A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc. 59 (1976), 232-234. (1976) | MR 0430596

Figiel T.; Sucheston L. An application of Ramsey sets in analysis, Adv. Math. 20 (1976), 103-105. (1976) | MR 0417757 | Zbl 0325.46029

James R.C. Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129-140. (1964) | MR 0165344 | Zbl 0129.07901

Lévy P. Lecons d'analyse fonctionnelle, Gauthier-Villars, Paris, 1922. | Zbl 0043.32302

Lévy P. Problèmes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951. | MR 0041346 | Zbl 0155.18201

Lévy P. Quelques aspects de la pensée d'un mathématicien, Blanchard, Paris, 1970. | MR 0268008 | Zbl 0219.01020

Rudin W. Functional Analysis, McGraw-Hill, New York, 1973. | MR 0365062 | Zbl 0867.46001