Characterizations of spreading models of $l^1$
Kiriakouli, Persephone
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000), p. 79-95 / Harvested from Czech Digital Mathematics Library

Rosenthal in [11] proved that if $(f_{k})$ is a uniformly bounded sequence of real-valued functions which has no pointwise converging subsequence then $(f_{k})$ has a subsequence which is equivalent to the unit basis of $l^{1}$ in the supremum norm. Kechris and Louveau in [6] classified the pointwise convergent sequences of continuous real-valued functions, which are defined on a compact metric space, by the aid of a countable ordinal index ``$\gamma $''. In this paper we prove some local analogues of the above Rosenthal 's theorem (spreading models of $l^{1}$) for a uniformly bounded and pointwise convergent sequence $(f_{k})$ of continuous real-valued functions on a compact metric space for which there exists a countable ordinal $\xi$ such that $\gamma ((f_{n_{k}}))> \omega^{\xi}$ for every strictly increasing sequence $(n_{k})$ of natural numbers. Also we obtain a characterization of some subclasses of Baire-1 functions by the aid of spreading models of $l^{1}$.

Publié le : 2000-01-01
Classification:  46B20,  46B99,  46E15,  46E99,  54C35
@article{119142,
     author = {Persephone Kiriakouli},
     title = {Characterizations of spreading models of $l^1$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {41},
     year = {2000},
     pages = {79-95},
     zbl = {1039.46010},
     mrnumber = {1756928},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119142}
}
Kiriakouli, Persephone. Characterizations of spreading models of $l^1$. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 79-95. http://gdmltest.u-ga.fr/item/119142/

Alspach D.; Argyros S. Complexity of weakly null sequences, Dissertations Mathematicae CCCXXI (1992), 1-44. (1992) | MR 1191024 | Zbl 0787.46009

Alspach D.; Odell E. Averaging null sequences, Lecture Notes in Math. 1332, Springer, Berlin, 1988. | MR 0967092

Argyros S.A.; Mercourakis S.; Tsarpalias A. Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157-193. (1998) | MR 1658551 | Zbl 0942.46007

Bourgain J. On convergent sequences of continuous functions, Bull. Soc. Math. Belg. Ser. B 32 (1980), 235-249. (1980) | MR 0682645 | Zbl 0474.54008

Haydon R.; Odell E.; Rosenthal H. On certain classes of Baire-1 functions with applications to Banach space theory, Longhorn Notes, The University of Texas at Austin, Funct. Anal. Sem. 1987-89. | Zbl 0762.46006

Kechris A.S.; Louveau A. A classification of Baire class 1 functions, Trans. Amer. Math. Soc. 318 (1990), 209-236. (1990) | MR 0946424 | Zbl 0692.03031

Kiriakouli P. Namioka spaces, Baire-1 functions, Combinatorial principles of the type of Ramsey and their applications in Banach spaces theory (in Greek), Doctoral Dissertation, Athens Univ., 1994.

Kiriakouli P. Classifications and characterizations of Baire-1 functions, Comment. Math. Univ. Carolinae 39.4 (1998), 733-748. (1998) | MR 1715462

Kiriakouli P. On combinatorial theorems with applications to Banach spaces theory, preprint, 1994.

Mercourakis S.; Negrepontis S. Banach spaces and topology II, Recent Progress in General Topology, M. Hušek and J. van Mill, eds., Elsevier Science Publishers B.V., 1992, pp.495-536. | Zbl 0832.46005

Rosenthal H.P. A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413. (1974) | MR 0358307