If $f:[0,1]\to{\Bbb R}$ is strictly increasing and continuous define $T_fx=f(x)\, (\operatorname{mod} 1)$. A transformation $\tilde{T}:[0,1]\to [0,1]$ is called $\varepsilon$-close to $T_f$, if $\tilde{T}x=\tilde{f}(x)\, (\operatorname{mod} 1)$ for a strictly increasing and continuous function $\tilde{f}:[0,1]\to{\Bbb R}$ with $\|\tilde{f}-f\|_{\infty}<\varepsilon$. It is proved that the topological pressure $p(T_f,g)$ is lower semi-continuous, and an upper bound for the jumps up is given. Furthermore the continuity of the maximal measure is shown, if a certain condition is satisfied. Then it is proved that the topological pressure is upper semi-continuous for every continuous function $g:[0,1]\to{\Bbb R}$, if and only if $0$ is not periodic or $1$ is not periodic. Finally it is shown that the topological entropy is continuous, if $h_{\text{\rm top}}(T_f)>0$.
@article{119141, author = {Peter Raith}, title = {On the continuity of the pressure for monotonic mod one transformations}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {61-78}, zbl = {1034.37021}, mrnumber = {1756927}, language = {en}, url = {http://dml.mathdoc.fr/item/119141} }
Raith, Peter. On the continuity of the pressure for monotonic mod one transformations. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 61-78. http://gdmltest.u-ga.fr/item/119141/
Continuity of entropy for bimodal maps, J. London Math. Soc. 52 (1995), 547-567. (1995) | MR 1363820
On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), 213-237 Part 2 Israel J. Math. 38 (1981), 107-115. (1981) | MR 0570882 | Zbl 0456.28006
Monotonic mod one transformations, Studia Math. 80 (1984), 17-40. (1984) | MR 0781724 | Zbl 0506.54034
Jumps of entropy in one dimension, Fund. Math. 132 (1989), 215-226. (1989) | MR 1002409 | Zbl 0694.54019
Entropy of piecewise continuous interval maps, European Conference on Iteration Theory (ECIT 89), Batschuns, 1989 Ch. Mira, N. Netzer, C. Simó, Gy. Targoński 239-245 World Scientific Singapore (1991). (1991) | MR 1184170 | Zbl 1026.37504
Hausdorff dimension for piecewise monotonic maps, Studia Math. 94 (1989), 17-33. (1989) | MR 1008236 | Zbl 0687.58013
Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J. Math. 80 (1992), 97-133. (1992) | MR 1248929 | Zbl 0768.28010
Continuity of the Hausdorff dimension for invariant subsets of interval maps, Acta Math. Univ. Comenian. 63 (1994), 39-53. (1994) | MR 1342594 | Zbl 0828.58014
Continuity of the entropy for monotonic mod one transformations, Acta Math. Hungar. 77 (1997), 247-262. (1997) | MR 1485848 | Zbl 0906.54016
Stability of the maximal measure for piecewise monotonic interval maps, Ergodic Theory Dynam. Systems 17 (1997), 1419-1436. (1997) | MR 1488327 | Zbl 0898.58015
The dynamics of piecewise monotonic maps under small perturbations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997), 783-811. (1997) | MR 1627314
Perturbations of a topologically transitive piecewise monotonic map on the interval, Proceedings of the European Conference on Iteration Theory (ECIT 96), Urbino, 1996 (L. Gardini et al., eds.), Grazer Math. Ber. 339 (1999), 301-312. | MR 1748832 | Zbl 0948.37026
Discontinuities of the pressure for piecewise monotonic interval maps, Ergodic Theory Dynam. Systems, to appear preprint, Wien, 1997. | MR 1826666 | Zbl 0972.37024
An introduction to ergodic theory, Graduate Texts in Mathematics 79 Springer New York (1982). (1982) | MR 0648108 | Zbl 0475.28009