Let $L$ be a completely distributive lattice and {\bf C} a topological construct; a process is given in this paper to obtain a topological construct $\bold C (L)$, called the tower extension of $\bold C$ (indexed by $L$). This process contains the constructions of probabilistic topological spaces, probabilistic pretopological spaces, probabilistic pseudotopological spaces, limit tower spaces, pretopological approach spaces and pseudotopological approach spaces, etc, as special cases. It is proved that this process has a lot of nice properties, for example, it preserves concrete reflectivity, concrete coreflectivity, and it preserves convenient hulls of topological construct, i.e., the extensional topological hulls (ETH), the cartesian closed topological hulls (CCTH) and the topological universe hulls (TUH) of topological constructs.
@article{119139, author = {De Xue Zhang}, title = {Tower extension of topological constructs}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {41-51}, zbl = {1038.54006}, mrnumber = {1756925}, language = {en}, url = {http://dml.mathdoc.fr/item/119139} }
Zhang, De Xue. Tower extension of topological constructs. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 41-51. http://gdmltest.u-ga.fr/item/119139/
Abstract and Concrete Categories, Wiley, New York, 1990. | MR 1051419
Cartesian closed initial completions, Topology Appl. 11 (1980), 1-16. (1980) | MR 0550868
Étude élémentaire des catégories d'ensembles structrés, Bull. Soc. Math. Belgique 18 (1960), 142-164, 387-414. (1960)
Fuzzy neighbourhood convergence spaces, Fuzzy Sets and Systems 76 (1995), 395-406. (1995) | MR 1365406
Some cartesian closed topological categories of convergence spaces, in E. Binz, H. Herrlich (eds.), Categorical Topology, (Proc. Mannheim, 1975), Lecture Notes in Mathematics, 540, Springer, Berlin, 1976, pp.93-108. | MR 0493924 | Zbl 0332.54004
Approach spaces, limit tower spaces and probabilistic convergence spaces, Applied Categorical Structures 5 (1997), 99-110. (1997) | MR 1456517 | Zbl 0885.54008
The relationship between a fuzzy uniformity and its family of $\alpha$-level uniformities, Fuzzy Sets and Systems 54 (1993), 311-315. (1993) | MR 1215574 | Zbl 0871.54009
A Compendium of Continuous Lattices, Springer, Berlin, 1980. | MR 0614752 | Zbl 0452.06001
Cartesian closed topological categories, Math. Colloq. Univ. Cape Town 9 (1974), 1-16. (1974) | MR 0460414 | Zbl 0318.18011
Are there convenient subcategories of Top?, Topology Appl. 15 (1983), 263-271. (1983) | MR 0694546 | Zbl 0538.18004
Topological improvements of categories of structured sets, Topology Appl. 27 (1987), 145-155. (1987) | MR 0911688 | Zbl 0632.54008
Hereditary topological constructs, in Z. Frolík (ed.), General Topology and its relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium, Heldermann Verlag, Berlin, 1988, pp.240-262. | MR 0952611 | Zbl 0662.18003
On the representability of partial morphisms in Top and in related constructs, in F. Borceux (ed.), Categorical Algebra and its Applications, (Proc. Louvain-La-Neuve, 1987), Lecture Notes in Mathematics, 1348, Springer, Berlin, 1988, pp.143-153. | MR 0975967 | Zbl 0662.18004
Cartesian closed topological hulls, Proc. Amer. Math. Soc. 62 (1977), 215-222. (1977) | MR 0476831 | Zbl 0361.18006
Categorical properties of probabilistic convergence spaces, Applied Categorical Structures 6 (1998), 495-513. (1998) | MR 1657510 | Zbl 0917.54003
Improving Top: PrTop and PsTop, in H. Herrlich, H.E. Porst (eds.), Category Theory at Work, Heldermann Verlag, Berlin, 1991, pp.21-34. | MR 1147916 | Zbl 0753.18003
Topological quasitopos hulls of categories containing topological and metric objects, Cahiers Top. Géom. Diff. Cat. 30 (1989), 213-228. (1989) | MR 1029625 | Zbl 0706.18002
Fuzzy uniform spaces, J. Math. Anal. Appl. 82 (1981), 370-385. (1981) | MR 0629763 | Zbl 0494.54005
Fuzzy neighbourhood spaces, Fuzzy Sets and Systems 7 (1982), 165-189. (1982)
Approach spaces, a common supercategory of TOP and MET, Math. Nachr. 141 (1989), 183-226. (1989) | MR 1014427 | Zbl 0676.54012
Approach Spaces, the missing link in the Topology-Uniformity-Metric triad, Oxford Mathematical Monographs, Oxford University Press, 1997. | MR 1472024 | Zbl 0891.54001
AUnif: A common supercategory of pMet and Unif, Internat. J. Math. Math. Sci. 21 (1998), 1-18. (1998) | MR 1486952 | Zbl 0890.54024
Description of topological universes, in H. Ehrig et al, (eds.), Categorical Methods in Computor Science with Aspects from Topology, (Proc. Berlin, 1988), Lecture Notes in Computor Science, 393, Springer, Berlin, 1989, pp.325-332. | MR 1048372
Theory of Topological Structures, an Approach to Categorical Topology, D. Reidel Publishing Company, Dordrecht, 1988. | MR 0937052 | Zbl 0649.54001
Probabilistic convergence spaces, J. Austral. Math. Soc., (series A) 61 (1996), 400-420. (1996) | MR 1420347 | Zbl 0943.54002
On the determination of fuzzy topological spaces, and fuzzy neighbourhood spaces by their level topologies, Fuzzy Sets and Systems 12 (1984), 71-85. (1984) | MR 0734394 | Zbl 0574.54004
Are there topoi in topology, in E. Binz, H. Herrlich, (eds.), Categorical Topology, (Proc. Mannheim, 1975), Lecture Notes in Mathematics, 540, Springer, Berlin, 1976, pp.699-719. | MR 0458346 | Zbl 0354.54001
Lecture Notes on Topoi and Quasitopoi, World Scientific, Singapore, 1991. | MR 1094373 | Zbl 0727.18001