The general theory of J'onsson-classes is generalized to strongly smooth quasiconstructs in such a way that it also allows the construction of universal categories. One example of the theory is the existence of a concrete universal category over every base category. Properties are given which are (under certain conditions) equivalent to the existence of homogeneous universal objects. Thereby, we disprove the existence of a homogeneous {\it C\/}-universal category. The notion of homogeneity is strengthened to extremal homogeneity. Extremally homogeneous universal objects, for which additionally every morphism between smaller subobjects is extendable to an endomorphism, are constructed in so called extremally smooth quasiconstructs.
@article{119138, author = {R. Rother}, title = {Universal objects in quasiconstructs}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {25-39}, zbl = {1034.18005}, mrnumber = {1756924}, language = {en}, url = {http://dml.mathdoc.fr/item/119138} }
Rother, R. Universal objects in quasiconstructs. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 25-39. http://gdmltest.u-ga.fr/item/119138/
Abstract and Concrete Categories, Wiley Interscience, New York, 1990. | MR 1051419
The Theory of Ultrafilters, Springer, Berlin-Heidelberg, 1974. | MR 0396267 | Zbl 0298.02004
Category Theory, Heldermann, Berlin, 1979. | MR 0571016 | Zbl 1125.18300
Homogeneous universal relational systems, Math. Scand. 8 (1960), 137-142. (1960) | MR 0125021
On universal concrete categories, Algebra Universalis 5 (1975), 149-151. (1975) | MR 0404385
The Stone Space of the Saturated Boolean Algebras, Proc. Internat. Sympos. on Topology and its Applications, Herceg-Novi, August 1968. | MR 0248057 | Zbl 0223.06002
Realizations of topological categories, Applied Categorical Structures, to appear. | MR 1865613 | Zbl 0993.18003
Sum of categories with amalgamated subcategory, Comment. Math. Univ. Carolinae 6.4 (1965), 449-474. (1965) | MR 0190208
Universal categories, Comment. Math. Univ. Carolinae 7.2 (1966), 143-206. (1966) | MR 0202808
Universal concrete categories and functors, Cahiers Topologie Géom. Différentielle Catégoriques, Vol. 34-3 (1993), 239-256. (1993) | MR 1239471
Universalities, Applied Categorical Structures 2 (1994), 173-185. (1994) | MR 1283435