Universal objects in quasiconstructs
Rother, R.
Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000), p. 25-39 / Harvested from Czech Digital Mathematics Library

The general theory of J'onsson-classes is generalized to strongly smooth quasiconstructs in such a way that it also allows the construction of universal categories. One example of the theory is the existence of a concrete universal category over every base category. Properties are given which are (under certain conditions) equivalent to the existence of homogeneous universal objects. Thereby, we disprove the existence of a homogeneous {\it C\/}-universal category. The notion of homogeneity is strengthened to extremal homogeneity. Extremally homogeneous universal objects, for which additionally every morphism between smaller subobjects is extendable to an endomorphism, are constructed in so called extremally smooth quasiconstructs.

Publié le : 2000-01-01
Classification:  18A40,  18B15
@article{119138,
     author = {R. Rother},
     title = {Universal objects in quasiconstructs},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {41},
     year = {2000},
     pages = {25-39},
     zbl = {1034.18005},
     mrnumber = {1756924},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119138}
}
Rother, R. Universal objects in quasiconstructs. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 25-39. http://gdmltest.u-ga.fr/item/119138/

Adámek J.; Herrlich H.; Strecker G. Abstract and Concrete Categories, Wiley Interscience, New York, 1990. | MR 1051419

Comfort W.W.; Negrepontis S. The Theory of Ultrafilters, Springer, Berlin-Heidelberg, 1974. | MR 0396267 | Zbl 0298.02004

Herrlich H.; Strecker G.E. Category Theory, Heldermann, Berlin, 1979. | MR 0571016 | Zbl 1125.18300

Jónsson B. Homogeneous universal relational systems, Math. Scand. 8 (1960), 137-142. (1960) | MR 0125021

Kučera L. On universal concrete categories, Algebra Universalis 5 (1975), 149-151. (1975) | MR 0404385

Negrepontis S. The Stone Space of the Saturated Boolean Algebras, Proc. Internat. Sympos. on Topology and its Applications, Herceg-Novi, August 1968. | MR 0248057 | Zbl 0223.06002

Rother R. Realizations of topological categories, Applied Categorical Structures, to appear. | MR 1865613 | Zbl 0993.18003

Trnková V. Sum of categories with amalgamated subcategory, Comment. Math. Univ. Carolinae 6.4 (1965), 449-474. (1965) | MR 0190208

Trnková V. Universal categories, Comment. Math. Univ. Carolinae 7.2 (1966), 143-206. (1966) | MR 0202808

Trnková V. Universal concrete categories and functors, Cahiers Topologie Géom. Différentielle Catégoriques, Vol. 34-3 (1993), 239-256. (1993) | MR 1239471

Trnková V. Universalities, Applied Categorical Structures 2 (1994), 173-185. (1994) | MR 1283435