Categories whose Yoneda embedding has a left adjoint are known as total categories and are characterized by a strong cocompleteness property. We introduce the notion of multitotal category $\Cal A$ by asking the Yoneda embedding $\Cal A \rightarrow [\Cal A^{op},\Cal Set]$ to be right multiadjoint and prove that this property is equivalent to totality of the formal product completion $\Pi \Cal A$ of $\Cal A$. We also characterize multitotal categories with various types of generators; in particular, the existence of dense generators is inherited by the formal product completion iff measurable cardinals cannot be arbitrarily large.
@article{119137, author = {Ji\v r\'\i\ Ad\'amek and Lurdes Sousa and Walter Tholen}, title = {Totality of product completions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {9-24}, zbl = {1034.18004}, mrnumber = {1756923}, language = {en}, url = {http://dml.mathdoc.fr/item/119137} }
Adámek, Jiří; Sousa, Lurdes; Tholen, Walter. Totality of product completions. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 9-24. http://gdmltest.u-ga.fr/item/119137/
Abstract and Concrete Categories, John Wiley and Sons, New York, 1990. | MR 1051419
Accessible and Locally Presentable Categories, Cambridge University Press, Cambridge, 1995.
Total categories with generators, J. Algebra 133 (1990), 63-78. (1990) | MR 1063381
Total categories and solid functors, Canad. J. Math. 42.1 (1990), 213-229. (1990) | MR 1051726
Compact and hypercomplete categories, J. Pure Appl. Algebra 21 (1981), 120-140. (1981) | MR 0614376
Connected limits, familial representability and Artin glueing, Math. Struct. in Comp. Science 5 (1995), 1-19. (1995) | MR 1377312 | Zbl 0849.18002
Catègories localisables, These de doctorat d'état, Université Pierre et Marie Curie - Paris 6, 1977.
Catègories localement multiprésentables, Arch. Math. 34 (1980), 344-356. (1980) | MR 0593951 | Zbl 0453.18002
Lokal präsentierbare Kategorien, Lecture Notes in Math. 221, Springer, Berlin, 1971. | MR 0327863 | Zbl 0225.18004
Adequate subcategories, Illinois J. Math. 4 (1960), 541-552. (1960) | MR 0175954 | Zbl 0104.01704
A survey of totality for enriched and ordinary categories, Cahiers Topologie Géom. Différentielle Catégoriques 27 (1986), 109-131. (1986) | MR 0850527 | Zbl 0593.18007
Accessibility and the solution set condition, J. Pure Appl. Algebra 98 (1995), 189-208. (1995) | MR 1319969
Note on multisolid categories, J. Pure Appl. Algebra 129 (1998), 201-205. (1998) | MR 1624462 | Zbl 0939.18003
The family approach to total cocompleteness and toposes, Trans. Amer. Math. Soc. 284 (1984), 355-369. (1984) | MR 0742429 | Zbl 0512.18001
Yoneda structures on $2$-categories, J. Algebra 50 (1978), 350-379. (1978) | MR 0463261 | Zbl 0401.18004
Semi-topological functors I, J. Pure Appl. Algebra 15 (1979), 53-73. (1979) | Zbl 0413.18001
Note on total categories, Bull. Austral. Math. Soc. 21 (1980), 169-173. (1980) | MR 0574836 | Zbl 0431.18002
MacNeille completions of concrete categories with local properties, Comment. Math., Univ. St. Pauli 28 (1979), 179-202. (1979) | MR 0578672
Some remarks on total categories, J. Algebra 75 (1982), 538-545. (1982) | MR 0653907 | Zbl 0504.18001