In this paper necessary and sufficient conditions for large subdirect products of $n$-flat modules from the category $Gen(Q)$ to be $n$-flat are given.
@article{119136, author = {Josef Jir\'asko}, title = {Generalized $n$-coherence}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {41}, year = {2000}, pages = {1-7}, zbl = {1041.16001}, mrnumber = {1756922}, language = {en}, url = {http://dml.mathdoc.fr/item/119136} }
Jirásko, Josef. Generalized $n$-coherence. Commentationes Mathematicae Universitatis Carolinae, Tome 41 (2000) pp. 1-7. http://gdmltest.u-ga.fr/item/119136/
Rings, Modules and Preradicals, Marcel Dekker Inc., New York and Basel, 1982. | MR 0655412
Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. (1960) | MR 0120260
On $n$-coherent rings, Comm. Algebra 24 (10) (1996), 3211-3216. (1996) | MR 1402554
$\prod$-flat and $\prod$-projective modules, Arch. Math. 22 (1971), 246-251. (1971) | MR 0292881
Large subdirect products of relative flat modules, Conf. Abelian Groups and Modules, Padova, 1994.
Generalized flatness and coherence, Comment. Math. Univ. Carolinae 21 (1980), 293-308. (1980) | MR 0580684
Coherence relative to a hereditary torsion theory, Comm. Algebra 10 (1982), 719-739. (1982) | MR 0650869
Endlich präsentierbare Moduln, Arch. Math. 20 (1969), 262-266. (1969) | MR 0244322
$\Cal F$-products of injective, flat and projective modules, Comm. Algebra 18 (1990), 3671-3683. (1990) | MR 1068613 | Zbl 0727.16002
Large subdirect products of projective modules, Comm. Algebra 17 (1989), 197-215. (1989) | MR 0970872 | Zbl 0664.16019
Large subdirect products of flat modules, Comm. Algebra 24 (4) (1996), 1389-1407. (1996) | MR 1380601 | Zbl 0845.16003
Large subdirect products of graded modules, Comm. Algebra 27 (2) (1999), 681-701. (1999) | MR 1671963 | Zbl 0923.16035