$C_p(I)$ is not subsequential
Malykhin, Viacheslav I.
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 785-788 / Harvested from Czech Digital Mathematics Library

If a separable dense in itself metric space is not a union of countably many nowhere dense subsets, then its $C_p$-space is not subsequential.

Publié le : 1999-01-01
Classification:  03E35,  54A20,  54A25,  54A35
@article{119131,
     author = {Viacheslav I. Malykhin},
     title = {$C\_p(I)$ is not subsequential},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {785-788},
     zbl = {1009.54033},
     mrnumber = {1756553},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119131}
}
Malykhin, Viacheslav I. $C_p(I)$ is not subsequential. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 785-788. http://gdmltest.u-ga.fr/item/119131/

Arhangel'Skii A.V. Topological Function Spaces, Kluwer Dordrecht, Boston, London 54 (1992). (1992)

Malykhin V.I. On subspaces of sequential spaces, Math. Notes (in Russian) 64 (1998), 3 407-413. (1998) | MR 1680130

Pytke'Ev E.G. On maximally resolvable spaces, Proc. Steklov Institute of Mathematics (1984), 154 225-230. (1984)

Malykhin V.I.; Tironi G. Weakly Fréchet-Urysohn spaces, Quaderni Matematica, II Serie, Univ. di Trieste (1996), 386 1-9. (1996)