If a separable dense in itself metric space is not a union of countably many nowhere dense subsets, then its $C_p$-space is not subsequential.
@article{119131, author = {Viacheslav I. Malykhin}, title = {$C\_p(I)$ is not subsequential}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {785-788}, zbl = {1009.54033}, mrnumber = {1756553}, language = {en}, url = {http://dml.mathdoc.fr/item/119131} }
Malykhin, Viacheslav I. $C_p(I)$ is not subsequential. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 785-788. http://gdmltest.u-ga.fr/item/119131/
Topological Function Spaces, Kluwer Dordrecht, Boston, London 54 (1992). (1992)
On subspaces of sequential spaces, Math. Notes (in Russian) 64 (1998), 3 407-413. (1998) | MR 1680130
On maximally resolvable spaces, Proc. Steklov Institute of Mathematics (1984), 154 225-230. (1984)
Weakly Fréchet-Urysohn spaces, Quaderni Matematica, II Serie, Univ. di Trieste (1996), 386 1-9. (1996)