We prove in particular that a continuous image of a Valdivia compact space is Corson provided it contains no homeomorphic copy of the ordinal segment $[0,\omega_1]$. This generalizes a result of R. Deville and G. Godefroy who proved it for Valdivia compact spaces. We give also a refinement of their result which yields a pointwise version of retractions on a Valdivia compact space.
@article{119130, author = {Ond\v rej F. K. Kalenda}, title = {Embedding of the ordinal segment $[0,\omega\_1]$ into continuous images of Valdivia compacta}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {777-783}, zbl = {1009.54017}, mrnumber = {1756552}, language = {en}, url = {http://dml.mathdoc.fr/item/119130} }
Kalenda, Ondřej F. K. Embedding of the ordinal segment $[0,\omega_1]$ into continuous images of Valdivia compacta. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 777-783. http://gdmltest.u-ga.fr/item/119130/
Some applications of projective resolutions of identity, Proc. London Math. Soc. 67 1 (1993), 183-199. (1993) | MR 1218125 | Zbl 0798.46008
Gâteaux differentiability of convex functions and topology: weak Asplund spaces, Wiley-Interscience, New York (1997), 180. (1997) | MR 1461271 | Zbl 0883.46011
A note on Asplund generated Banach spaces, Bull. Acad. Polon. Sci. 47 2 (1999 \toappear). (1999 \toappear) | MR 1711819 | Zbl 0946.46016
Espaces de Banach représentables, Israel J. Math. 41 4 (1982), 321-330. (1982) | MR 0657864 | Zbl 0498.46016
Properties of sets that lie in $\Sigma $-products (in Russian), Dokl. Akad. Nauk SSSR 237 (1977), 3 505-508. (1977) | MR 0461410
Stegall compact spaces which are not fragmentable, Topology Appl. 96 2 (1999), 121-132. (1999) | MR 1702306 | Zbl 0991.54030
Continuous images and other topological properties of Valdivia compacta, Fund. Math., to appear. | MR 1734916 | Zbl 0989.54019
A characterization of Valdivia compact spaces, Collectanea Math., to appear. | MR 1757850 | Zbl 0949.46004
Valdivia compacta and equivalent norms, preprint. | MR 1749079 | Zbl 1073.46009
Valdivia compacta and subspaces of $C(K)$ spaces, preprint KMA-1999-02, Charles University, Prague. | MR 1759476 | Zbl 0983.46020
The continuity of functions on Cartesian products, Trans. Amer. Math. Soc. 149 (1970), 187-198. (1970) | MR 0257987 | Zbl 0229.54028
Projective resolutions of the identity in $C(K)$ spaces, Archiv der Math. 54 (1990), 493-498. (1990) | MR 1049205
Simultaneous resolutions of the identity operator in normed spaces, Collectanea Math. 42 3 (1991), 265-285. (1991) | MR 1203185 | Zbl 0788.47024
On certain compact topological spaces, Revista Matemática de la Universidad Complutense de Madrid 10 1 (1997), 81-84. (1997) | MR 1452564 | Zbl 0870.54025