Products, the Baire category theorem, and the axiom of dependent choice
Herrlich, Horst ; Keremedis, Kyriakos
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 771-775 / Harvested from Czech Digital Mathematics Library

In ZF (i.e., Zermelo-Fraenkel set theory without the Axiom of Choice) the following statements are shown to be equivalent: (i) The axiom of dependent choice. (ii) Products of compact Hausdorff spaces are Baire. (iii) Products of pseudocompact spaces are Baire. (iv) Products of countably compact, regular spaces are Baire. (v) Products of regular-closed spaces are Baire. (vi) Products of Čech-complete spaces are Baire. (vii) Products of pseudo-complete spaces are Baire.

Publié le : 1999-01-01
Classification:  03E25,  04A25,  54A35,  54B10,  54D30,  54E52
@article{119129,
     author = {Horst Herrlich and Kyriakos Keremedis},
     title = {Products, the Baire category theorem, and the axiom of dependent choice},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {771-775},
     zbl = {1010.03037},
     mrnumber = {1756551},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119129}
}
Herrlich, Horst; Keremedis, Kyriakos. Products, the Baire category theorem, and the axiom of dependent choice. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 771-775. http://gdmltest.u-ga.fr/item/119129/

Blaire C.E. The Baire Category Theorem implies the principle of dependent choice, Bull. Acad. Math. Astronom. Phys. 25 (1977), 933-934. (1977) | MR 0469765

Bourbaki N. Topologie générale, ch. IX., Paris, 1948. | Zbl 1107.54001

Brunner N. Kategoriesätze und Multiples Auswahlaxiom, Zeitschr. f. Math. Logik und Grundlagen d. Math. 29 (1983), 435-443. (1983) | MR 0716858 | Zbl 0526.03031

Čech E. On bicompact spaces, Ann. Math. 38 (1937), 823-844. (1937) | MR 1503374

Colmez J. Sur les espaces précompacts, C.R. Acad. Paris 234 (1952), 1019-1021. (1952) | MR 0055658 | Zbl 0047.16202

Engelking R. General Topology, Heldermann Verlag, 1989. | MR 1039321 | Zbl 0684.54001

Fossy J.; Morillon M. The Baire category property and some notions of compactness, preprint, 1995. | MR 1624737 | Zbl 0922.03070

Goldblatt R. On the role of the Baire Category Theorem and Dependent Choice in the foundations of logic, J. Symbolic Logic 50 (1985), 412-422. (1985) | MR 0793122 | Zbl 0567.03023

Hausdorff F. Grundzüge der Mengenlehre, Leipzig, 1914. | Zbl 1010.01031

Herrlich H. $T_\nu$-Abgeschlossenheit und $T_\nu$-Minimalität, Math. Z. 88 (1965), 285-294. (1965) | MR 0184191 | Zbl 0139.40203

Herrlich H.; Keremedis K. The Baire Category Theorem and Choice, to appear in Topology Appl. | MR 1787859 | Zbl 0991.54036

Howard P.; Rubin J.E. Consequences of the axiom of choice, AMS Math. Surveys and Monographs 59, 1998. | MR 1637107 | Zbl 0947.03001

Moore R.L. An extension of the theorem that no countable point set is perfect, Proc. Nat. Acad. Sci. USA 10 (1924), 168-170. (1924)

Oxtoby J.C. Cartesian products of Baire spaces, Fund. Math. 49 (1961), 157-166. (1961) | MR 0140638 | Zbl 0113.16402

Pettey D.H. Products of regular-closed spaces, Topology Appl. 14 (1982), 189-199. (1982) | MR 0667666 | Zbl 0499.54017