In this note it is shown that almost Hermitian locally homogeneous manifolds are determined, up to local isometries, by an integer $k_H$, the covariant derivatives of the curvature tensor up to order $k_H+2$ and the covariant derivatives of the complex structure up to the second order calculated at some point. An example of a Hermitian locally homogeneous manifold which is not locally isometric to any Hermitian globally homogeneous manifold is given.
@article{119125, author = {Sergio Console and Lorenzo Nicolodi}, title = {Infinitesimal characterization of almost Hermitian homogeneous spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {713-721}, zbl = {1020.53031}, mrnumber = {1756547}, language = {en}, url = {http://dml.mathdoc.fr/item/119125} }
Console, Sergio; Nicolodi, Lorenzo. Infinitesimal characterization of almost Hermitian homogeneous spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 713-721. http://gdmltest.u-ga.fr/item/119125/
On homogeneous Riemannian spaces with invariant tensor structure, Soviet Math. Dokl. 21 (2) (1980), 734-737. (1980)
Generalized Symmetric Spaces, Lecture Notes in Math. 805 Springer Berlin (1980). (1980) | MR 0579184 | Zbl 0431.53042
Counter-example to the ``Second Singer's Theorem'', Ann. Global Anal. Geom. 8 (1990), 211-214. (1990) | MR 1088512 | Zbl 0736.53047
A canonical connection for locally homogeneous Riemannian manifolds, D. Ferus et al. Proc. Conf. Global Diff. Geom. and Global Analysis, Berlin, 1990, Lecture Notes in Math. 1481 Springer Berlin (1990), 97-103. (1990) | MR 1178522
Curvature orbits and locally homogeneous Riemannian manifolds, Ann. Mat. Pura Appl. 165 (1993), 121-131. (1993) | MR 1271415 | Zbl 0804.53072
Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65. (1954) | MR 0059050 | Zbl 0059.15805
On two theorems of I.M. Singer about homogeneous spaces, Ann. Global Anal. Geom. 8 (1990), 193-209. (1990) | MR 1088511 | Zbl 0676.53058
Notes on homogeneous almost Hermitian manifolds, Hokkaido Math. J. 7 (1978), 206-213. (1978) | MR 0509406 | Zbl 0388.53014
Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. (1960) | MR 0131248 | Zbl 0171.42503
Locally homogeneous Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino 50/4 (1993), 411-426. (1993) | MR 1261452 | Zbl 0804.53072
Homogeneous Structures on Riemannian Manifolds, London Mathematical Society Lecture Notes Series 83, Cambridge University Press Cambridge (1983). (1983) | MR 0712664 | Zbl 0509.53043
Infinitesimal models and locally homogeneous almost Hermitian manifolds, Math. J. Toyama Univ. 18 (1995), 147-154. (1995) | MR 1369702 | Zbl 0865.53042