Existence and non-existence for strongly coupled quasi-linear cooperative elliptic systems
ZOU, Henghui
J. Math. Soc. Japan, Tome 59 (2007) no. 1, p. 393-421 / Harvested from Project Euclid
We study the prototype model of the boundary value problem $$ \begin{array}{rl} {\rm div}(|\nabla u|^{m-2}\nabla u) + u^av^b = 0& \mbox{in }\quad \Omega, \\ {\rm div}(|\nabla v|^{m-2}\nabla v) + u^cv^d = 0& \mbox{in }\quad \Omega, \\ u = v = 0&\mbox{on } \quad\partial\Omega, \end{array} $$ where $\Omega\subset\bm{R}^n$ ( $n\ge2$ ) is a connected smooth domain, and the exponents $m>1$ and $a,b,c,d\ge0$ are non-negative numbers. Under appropriate conditions on the exponents $m$ , $a$ , $b$ , $c$ and $d$ , and on the domain $\Omega$ , a variety of results on a priori estimates, existence and non-existence of positive solutions have been established.
Publié le : 2007-04-14
Classification:  quasi-linear,  existence,  cooperative,  strongly coupled,  systems,  normal,  35J55,  35J65
@article{1191247593,
     author = {ZOU, Henghui},
     title = {Existence and non-existence for strongly coupled quasi-linear cooperative elliptic systems},
     journal = {J. Math. Soc. Japan},
     volume = {59},
     number = {1},
     year = {2007},
     pages = { 393-421},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1191247593}
}
ZOU, Henghui. Existence and non-existence for strongly coupled quasi-linear cooperative elliptic systems. J. Math. Soc. Japan, Tome 59 (2007) no. 1, pp.  393-421. http://gdmltest.u-ga.fr/item/1191247593/