We shall characterize the sets of locally uniform convergence of pointwise convergent sequences. Results obtained for sequences of holomorphic functions by Hartogs and Rosenthal in 1928 will be generalized for many other sheaves of functions. In particular, our Hartogs-Rosenthal type theorem holds for the sheaf of solutions to the second order elliptic PDE's as well as it has applications to the theory of harmonic spaces.
@article{119122, author = {Libu\v se \v St\v epni\v ckov\'a}, title = {Pointwise and locally uniform convergence of holomorphic and harmonic functions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {665-678}, zbl = {1009.31002}, mrnumber = {1756543}, language = {en}, url = {http://dml.mathdoc.fr/item/119122} }
Štěpničková, Libuše. Pointwise and locally uniform convergence of holomorphic and harmonic functions. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 665-678. http://gdmltest.u-ga.fr/item/119122/
Espaces harmoniques associés aux opérateurs différentiels linéaires du second ordre de type elliptique, Springer Berlin (1968). (1968) | MR 0241681
Potential Theory on Harmonic Spaces, Springer Berlin (1972). (1972) | MR 0419799 | Zbl 0248.31011
Functions of One Complex Variable I, Springer New York (1995). (1995) | MR 1344449
Global approximation in harmonic spaces, Proc. Amer. Math. Soc. 122 (1994), 213-221. (1994) | MR 1203986 | Zbl 0809.31006
Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12 (1962), 415-571. (1962) | MR 0139756
Über Folgen analytischer Funktionen, Math. Ann. 100 (1928), 212-263. (1928) | MR 1512483
Note on the functions defined by infinite series whose terms are analytic functions, Ann. of Math. 3 (1901), 25-34. (1901) | MR 1502274
Approximation et caractère de quasi-analyticit dans la thorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier 17 (1967), 383-399. (1967) | MR 0227456
The Theory of Functions, Oxford University Press New York (1960). (1960)
Punktweise und lokal gleichmäßige Konvergenz von Folgen holomorpher Funktionen I., Math. Semesterber. 41 (1994), 69-75. (1994) | MR 1332472 | Zbl 0815.30002
Punktweise und lokal gleichmäßige Konvergenz von Folgen holomorpher Funktionen II., Math. Semesterber. 41 (1994), 81-87. (1994) | MR 1332472 | Zbl 0815.30003