The purpose of this paper is to study conditions under which the restriction of a certain Galois connection on a complete lattice yields an isomorphism from a set of prime elements to a set of coprime elements. An important part of our study involves the set on which the way-below relation is multiplicative.
@article{119117, author = {Melvin F. Janowitz and Robert C. Powers and Thomas Riedel}, title = {Primes, coprimes and multiplicative elements}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {607-615}, zbl = {1011.06009}, mrnumber = {1756539}, language = {en}, url = {http://dml.mathdoc.fr/item/119117} }
Janowitz, Melvin F.; Powers, Robert C.; Riedel, Thomas. Primes, coprimes and multiplicative elements. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 607-615. http://gdmltest.u-ga.fr/item/119117/
Lattice Theory, American Mathematical Society, Providence RI, 1948. | MR 0029876 | Zbl 0537.06001
A Compendium of Continuous Lattices, Springer-Verlag, Berlin-Heidelberg-New York, 1980. | MR 0674650
Unary operations on completely distributive complete lattices, Springer Lecture Notes in Math. 1149 (1985), 46-81. (1985) | MR 0823006 | Zbl 0575.06011
Lattice theory; first concepts and distributive lattices, W.H. Freeman, San Francisco, 1971. | MR 0321817
Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952), 677-680. (1952) | MR 0052392 | Zbl 0049.30304
Semicontinuous lattices, Algebra Universalis 37 (1997), 458-476. (1997) | MR 1465303 | Zbl 0903.06005