An example of strongly self-homeomorphic dendrite not pointwise self-homeomorphic
Pyrih, Pavel
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 571-576 / Harvested from Czech Digital Mathematics Library

Such spaces in which a homeomorphic image of the whole space can be found in every open set are called {\it self-homeomorphic}. W.J. Charatonik and A. Dilks asked if any strongly self-homeomorphic dendrite is pointwise self-homeomorphic. We give a negative answer in Example 2.1.

Publié le : 1999-01-01
Classification:  54C25,  54F15,  54F50
@article{119112,
     author = {Pavel Pyrih},
     title = {An example of strongly self-homeomorphic dendrite not pointwise self-homeomorphic},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {571-576},
     zbl = {1010.54038},
     mrnumber = {1732479},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119112}
}
Pyrih, Pavel. An example of strongly self-homeomorphic dendrite not pointwise self-homeomorphic. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 571-576. http://gdmltest.u-ga.fr/item/119112/

Charatonik W.J.; Dilks A. On self-homeomorphic spaces, Topology Appl. 55 (1994), 215-238. (1994) | MR 1259506 | Zbl 0788.54040

Nadler S.B., Jr. Continuum Theory: An Introduction, Monographs and Textbooks in Pure and Applied Math, vol. 158, Marcel Dekker, Inc., New York, N.Y. (1992). (1992) | MR 1192552 | Zbl 0757.54009