Productivity of coreflective classes of topological groups
Herrlich, Horst ; Hušek, Miroslav
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 551-560 / Harvested from Czech Digital Mathematics Library

Every nontrivial countably productive coreflective subcategory of topological linear spaces is $\kappa$-productive for a large cardinal $\kappa$ (see [10]). Unlike that case, in uniform spaces for every infinite regular cardinal $\kappa$, there are coreflective subcategories that are $\kappa$-productive and not $\kappa^+$-productive (see [8]). From certain points of view, the category of topological groups lies in between those categories above and we shall show that the corresponding results on productivity of coreflective subcategories are also ``in between'': for some coreflections the results analogous to those in topological linear spaces are true, for others the results analogous to those for uniform spaces hold.

Publié le : 1999-01-01
Classification:  18A40,  18B30,  54B10,  54B30,  54H11
@article{119110,
     author = {Horst Herrlich and Miroslav Hu\v sek},
     title = {Productivity of coreflective classes of topological groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {551-560},
     zbl = {1009.54041},
     mrnumber = {1732481},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119110}
}
Herrlich, Horst; Hušek, Miroslav. Productivity of coreflective classes of topological groups. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 551-560. http://gdmltest.u-ga.fr/item/119110/

Adámek J.; Herrlich H.; Strecker G. Abstract and Concrete Categories, Wiley Interscience, New York, 1990. | MR 1051419

Balcar B Sequential Boolean algebras, preprint, May 1995.

Balcar B.; Hušek M. Sequential continuity and submeasurable cardinals, to appear in Topology Appl. | MR 1806027

Chudnovskij D.V. Sequentially continuous mappings and real-valued measurable cardinals, Infinite and finite sets (Colloq. Math. Soc. J. Bolyai, Vol.10, Part I, Keszthély 1973), (North Holland, Amsterdam, 1975), pp.275-288. | MR 0505507

Dierolf S. Über asoziirte lineare und lokalkonvexe Topologien, Manuscripta Math. 16 (1975), 27-46. (1975) | MR 0415351

Dierolf P.; Dierolf S. On linear topologies determined by a family of subsets of a topological vector spaces, Gen. Topology Appl. 8 (1978), 127-140. (1978) | MR 0473867

Herrlich H. On the concept of reflections in general topology, in: Contributions to Extension Theory of Topological Structures, Proc. Symp. Berlin 1967 (VEB, Berlin 1969). | MR 0284986 | Zbl 0182.25301

Hušek M. Products of uniform spaces, Czech. Math. J. 29 (1979), 130-141. (1979) | MR 0518147

Hušek M. Sequentially continuous homomorphisms on products of topological groups, Topology Appl. 70 (1996), 155-165. (1996) | MR 1397074

Hušek M. Productivity of some classes of topological linear spaces, Topology Appl. 80 (1997), 141-154. (1997) | MR 1469474

Semadeni Z.; Swirszcz T. Reflective and coreflective subcategories of categories of Banach spaces and Abelian groups, Bull. Acad. Pol. 25 (1977), 1105-1107. (1977) | MR 0476824

Shelah S. Infinite Abelian groups, Whitehead problem and some constructions, Israel J. Math. 18 (1974), 243-256. (1974) | MR 0357114 | Zbl 0318.02053

Solovay R.M. Real-valued measurable cardinals, Axiomatic Set Theory (Proc. Symp. Pure Math., Vol XIII, Part I, California, 1967, Amer. Math. Soc., 1971), pp.397-428. | MR 0290961 | Zbl 0222.02078

Sydow W. Über die Kategorie der topologischen Vektorräume, Doktor-Dissertation (Fernuniversität Hagen, 1980). | Zbl 0466.18006