Let $C$ be a nonempty closed convex subset of a Banach space $E$ and \linebreak $T:C\rightarrow C$ a $k$-Lipschitzian rotative mapping, i.e\. such that $\|Tx-Ty\|\leq k\cdot \|x-y\|$ and $\|T^n x-x\|\leq a\cdot \|x-Tx\|$ for some real $k$, $a$ and an integer $n>a$. The paper concerns the existence of a fixed point of $T$ in $p$-uniformly convex Banach spaces, depending on $k$, $a$ and $n=2,3$.
@article{119106, author = {Jaros\l aw G\'ornicki}, title = {Remarks on fixed points of rotative Lipschitzian mappings}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {495-510}, zbl = {1065.47504}, mrnumber = {1732485}, language = {en}, url = {http://dml.mathdoc.fr/item/119106} }
Górnicki, Jarosław. Remarks on fixed points of rotative Lipschitzian mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 495-510. http://gdmltest.u-ga.fr/item/119106/
An Introduction to the Theory of Distributions, M. Dekker, New York, 1973. | MR 0461128 | Zbl 0512.46040
Linear Operators, vol. I, Interscience, New York, 1958. | Zbl 0635.47003
Theory of $H^p$ Spaces, Academic Press, New York, 1970. | MR 0268655
Convexity of balls and fixed point theorems for mappings with nonexpansive square, Compositio Math. 22 (1970), 269-274. (1970) | MR 0273477 | Zbl 0202.12802
Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics 28, Cambridge University Press, London, 1990. | MR 1074005
A remark on nonexpansive mappings, Canad. Math. Bull. 24 (1981), 113-115. (1981) | MR 0611220 | Zbl 0461.47027
Fixed points of rotative Lipschitzian mappings, Rend. Sem. Mat. Fis. di Milano 51 (1981), 145-156. (1981) | MR 0708040 | Zbl 0535.47031
Some fixed point theorems in Banach spaces, Colloquium Math. 23 (1971), 103-106. (1971) | MR 0303367
Fixed points of involutions, Math. Japonica 43 (1996), 151-155. (1996) | MR 1373993
A general fixed point theorem for involutions, Indian J. Pure Appl. Math. 27{(1)} (1996), 13-23. (1996) | MR 1374884
A fixed point theorem for mappings with a nonexpansive iterate, Proc. Amer. Math. Soc. 29 (1971), 294-298. (1971) | MR 0284887 | Zbl 0213.41303
Selected topics on Lipschitzian mappings (in Polish), Thesis, Univ. M. Curie-Sklodowskiej, Lublin, 1987.
Fixed points of Lipschitzian $2$-rotative mappings, Bolletino U.M.I., Ser. VI, 5 (1986), 321-339. (1986) | MR 0897203 | Zbl 0634.47053
An $L^p$ inequality and its applications to fixed point theory and approximation theory, in: Progress in Approximation Theory (P. Nevai and A. Pinkus, eds.), Academic Press, New York, 1991, pp.609-624. | MR 1114800 | Zbl 0801.46012
Classical Banach Spaces, II - Function Spaces, Springer-Verlag, Berlin, 1979. | MR 0540367 | Zbl 0403.46022
Fixpunkte von Involutionen $n$-ter Ordnung, Österich. Acad. Wiss. Math.-Natur. kl. S-B 180 (1973), 89-93. (1973) | MR 0303369
Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. (1987) | MR 0869515 | Zbl 0617.41046
Strongly unique minimization of functionals in Banach spaces with applications to theory of approximation and fixed points, J. Math. Anal. Appl. 115 (1986), 155-172. (1986) | MR 0835591 | Zbl 0593.49004
Strongly unique best approximation in Banach spaces, II, J. Approx. Theory 51 (1987), 202-217. (1987) | MR 0913618 | Zbl 0657.41022
On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150. (1990) | MR 1059576
Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138. (1991) | MR 1111623 | Zbl 0757.46033
On uniformly convex function, J. Math. Anal. Appl. 95 (1983), 344-374. (1983) | MR 0716088