We characterize compact sets $X$ in the Riemann sphere $\Bbb S$ not separating $\Bbb S$ for which the algebra $A(X)$ of all functions continuous on $\Bbb S$ and holomorphic on $\Bbb S\smallsetminus X$, restricted to the set $X$, is pervasive on $X$.
@article{119105, author = {Jan \v Cerych}, title = {Pervasive algebras on planar compacts}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {491-494}, zbl = {1010.46051}, mrnumber = {1732486}, language = {en}, url = {http://dml.mathdoc.fr/item/119105} }
Čerych, Jan. Pervasive algebras on planar compacts. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 491-494. http://gdmltest.u-ga.fr/item/119105/
Maximal algebras of continuous functions, Acta Math. 103 (1960), 217-241. (1960) | MR 0117540 | Zbl 0195.13903
Uniform Algebras, Prentice Hall, Inc., Englewood Cliffs, N.J., 1969. | MR 0410387 | Zbl 1118.47014
A remark to maximality of several function algebras (in Russian), Čas. Pěst. Mat. 93 (1968), 346-348. (1968) | MR 0251539
Analytic Functions, Polskie Towarzystwo Matematyczne, Warszawa, 1952. | MR 0055432 | Zbl 0136.37301
Sur une fonction analytique partout continue, Fund. Math. 4 (1922), 144-150. (1922)
A nontrivial normal sup norm algebra, Bull. Amer. Math. Soc. 69 (1963), 391-395. (1963) | MR 0146646 | Zbl 0113.31502