Pervasive algebras on planar compacts
Čerych, Jan
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 491-494 / Harvested from Czech Digital Mathematics Library

We characterize compact sets $X$ in the Riemann sphere $\Bbb S$ not separating $\Bbb S$ for which the algebra $A(X)$ of all functions continuous on $\Bbb S$ and holomorphic on $\Bbb S\smallsetminus X$, restricted to the set $X$, is pervasive on $X$.

Publié le : 1999-01-01
Classification:  30E10,  46J10
@article{119105,
     author = {Jan \v Cerych},
     title = {Pervasive algebras on planar compacts},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {491-494},
     zbl = {1010.46051},
     mrnumber = {1732486},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119105}
}
Čerych, Jan. Pervasive algebras on planar compacts. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 491-494. http://gdmltest.u-ga.fr/item/119105/

Hoffman K.; Singer I.M. Maximal algebras of continuous functions, Acta Math. 103 (1960), 217-241. (1960) | MR 0117540 | Zbl 0195.13903

Gamelin T.W. Uniform Algebras, Prentice Hall, Inc., Englewood Cliffs, N.J., 1969. | MR 0410387 | Zbl 1118.47014

Fuka J. A remark to maximality of several function algebras (in Russian), Čas. Pěst. Mat. 93 (1968), 346-348. (1968) | MR 0251539

Saks S.; Zygmund A. Analytic Functions, Polskie Towarzystwo Matematyczne, Warszawa, 1952. | MR 0055432 | Zbl 0136.37301

Urysohn P.S. Sur une fonction analytique partout continue, Fund. Math. 4 (1922), 144-150. (1922)

Mckissick R. A nontrivial normal sup norm algebra, Bull. Amer. Math. Soc. 69 (1963), 391-395. (1963) | MR 0146646 | Zbl 0113.31502