Nonuniqueness for some linear oblique derivative problems for elliptic equations
Lieberman, Gary M.
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 477-481 / Harvested from Czech Digital Mathematics Library

It is well-known that the ``standard'' oblique derivative problem, $\Delta u = 0$ in $\Omega$, $\partial u/\partial \nu-u=0$ on $\partial\Omega$ ($\nu$ is the unit inner normal) has a unique solution even when the boundary condition is not assumed to hold on the entire boundary. When the boundary condition is modified to satisfy an obliqueness condition, the behavior at a single boundary point can change the uniqueness result. We give two simple examples to demonstrate what can happen.

Publié le : 1999-01-01
Classification:  35A05,  35B65,  35J25
@article{119103,
     author = {Gary M. Lieberman},
     title = {Nonuniqueness for some linear oblique derivative problems for elliptic equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {477-481},
     zbl = {1064.35508},
     mrnumber = {1732488},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119103}
}
Lieberman, Gary M. Nonuniqueness for some linear oblique derivative problems for elliptic equations. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 477-481. http://gdmltest.u-ga.fr/item/119103/

Gilbarg D.; Trudinger N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag Berlin-Heidelberg-New York (1983). (1983) | MR 0737190 | Zbl 0562.35001

Lieberman G.M. Local estimates for subsolutions and supersolutions of oblique derivative problems for general second-order elliptic equations, Trans. Amer. Math. Soc. 304 (1987), 343-353. (1987) | MR 0906819 | Zbl 0635.35037

Lieberman G.M. Oblique derivative problems in Lipschitz domains I. Continuous boundary values, Boll. Un. Mat. Ital. 1-B (1987), 1185-1210. (1987) | MR 0923448

Lieberman G.M. Oblique derivative problems in Lipschitz domains II. Discontinuous boundary values, J. Reine Angew. Math. 389 (1988), 1-21. (1988) | MR 0953664