The purpose of this paper is to prove the following result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping, such that $2T(x^2)=T(x)x+xT(x)$ holds for all $x\in R$. In this case $T$ is left and right centralizer.
@article{119101, author = {Joso Vukman}, title = {An identity related to centralizers in semiprime rings}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {447-456}, zbl = {1014.16021}, mrnumber = {1732490}, language = {en}, url = {http://dml.mathdoc.fr/item/119101} }
Vukman, Joso. An identity related to centralizers in semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 447-456. http://gdmltest.u-ga.fr/item/119101/
Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-323. (1988) | MR 0943433
Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006. (1988) | MR 0929422
Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324. (1975) | MR 0399182
Jordan derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. (1957) | MR 0095864
Rings with involution, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, London, 1976. | MR 0442017 | Zbl 0495.16007
Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. (1957) | MR 0095863
Centralizers in prime and semiprime rings, Comment. Math. Univ. Carolinae 38 (1997), 231-240. (1997) | MR 1455489
On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991), 609-614. (1991) | MR 1159807 | Zbl 0746.16011