An identity related to centralizers in semiprime rings
Vukman, Joso
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 447-456 / Harvested from Czech Digital Mathematics Library

The purpose of this paper is to prove the following result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping, such that $2T(x^2)=T(x)x+xT(x)$ holds for all $x\in R$. In this case $T$ is left and right centralizer.

Publié le : 1999-01-01
Classification:  16A12,  16A68,  16A72,  16N60,  16R50,  16W10,  16W20
@article{119101,
     author = {Joso Vukman},
     title = {An identity related to centralizers in semiprime rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {447-456},
     zbl = {1014.16021},
     mrnumber = {1732490},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119101}
}
Vukman, Joso. An identity related to centralizers in semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 447-456. http://gdmltest.u-ga.fr/item/119101/

Brešar M.; Vukman J. Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-323. (1988) | MR 0943433

Brešar M. Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006. (1988) | MR 0929422

Cusak J. Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324. (1975) | MR 0399182

Herstein I.N. Jordan derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. (1957) | MR 0095864

Herstein I.N. Rings with involution, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, London, 1976. | MR 0442017 | Zbl 0495.16007

Posner E. Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. (1957) | MR 0095863

Vukman J. Centralizers in prime and semiprime rings, Comment. Math. Univ. Carolinae 38 (1997), 231-240. (1997) | MR 1455489

Zalar B. On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991), 609-614. (1991) | MR 1159807 | Zbl 0746.16011