Composition operators acting on $\mathcal{N}_p$-spaces
Palmberg, Niklas
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 545-554 / Harvested from Project Euclid
We introduce a new class of functions, called the $\mathcal{N}_p$-spaces and study the boundedness and compactness of composition operators on $\mathcal{N}_p$-spaces as well as between $\mathcal{N}_p$-spaces and Bergman-type spaces. The paper is intended to give a self-contained introduction the the $\mathcal{N}_p$-spaces.
Publié le : 2007-09-14
Classification:  Composition operator,  $\mathcal{N}_p$-spaces,  Bergman-type spaces,  $\mathcal{Q}_p$-spaces,  Nevanlinna counting function,  Hadamard gap series,  47B33,  46E15,  30B10
@article{1190994217,
     author = {Palmberg, Niklas},
     title = {Composition operators acting on $\mathcal{N}\_p$-spaces},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 545-554},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1190994217}
}
Palmberg, Niklas. Composition operators acting on $\mathcal{N}_p$-spaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  545-554. http://gdmltest.u-ga.fr/item/1190994217/