If $R$ is a commutative ring with identity and $\leq$ is defined by letting $a\leq b$ mean $ab=a$ or $a=b$, then $(R,\leq)$ is a partially ordered ring. Necessary and sufficient conditions on $R$ are given for $(R,\leq)$ to be a lattice, and conditions are given for it to be modular or distributive. The results are applied to the rings $Z_{n}$ of integers mod $n$ for $n\geq2$. In particular, if $R$ is reduced, then $(R,\leq)$ is a lattice iff $R$ is a weak Baer ring, and $(R,\leq)$ is a distributive lattice iff $R$ is a Boolean ring, $Z_{3},Z_{4}$, $Z_{2}[x]/x^{2}Z_{2}[x]$, or a four element field.
@article{119099, author = {Melvin Henriksen and Frank A. Smith}, title = {The Bordalo order on a commutative ring}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {429-440}, zbl = {1011.06019}, mrnumber = {1732492}, language = {en}, url = {http://dml.mathdoc.fr/item/119099} }
Henriksen, Melvin; Smith, Frank A. The Bordalo order on a commutative ring. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 429-440. http://gdmltest.u-ga.fr/item/119099/
Baer$^*$-rings, Springer-Verlag, New York, 1972. | MR 0429975 | Zbl 0679.16011
Naturally ordered commutative rings, preprint.
A note on commutative Baer rings, J. Austral. Math. Soc. 13 (1971), 1-6. (1971) | MR 0294318
Basic Algebra I, W.H. Freeman and Co., San Francisco, 1974. | MR 0356989 | Zbl 0557.16001
Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. 13 (1963), 31-50. (1963) | MR 0143837 | Zbl 0108.04004
A note on commutative Baer rings I, J. Austral. Math. Soc. 14 (1972), 257-263. (1972) | MR 0318120
A note on commutative Baer rings II, ibid. 15 (1973), 15-21. (1973) | MR 0330140