Converging sequences in metric space have Hausdorff dimension zero, but their metric dimension (limit capacity, entropy dimension, box-counting dimension, Hausdorff dimension, Kolmogorov dimension, Minkowski dimension, Bouligand dimension, respectively) can be positive. Dimensions of such sequences are calculated using a different approach for each type. In this paper, a rather simple formula for (lower, upper) metric dimension of any sequence given by a differentiable convex function, is derived.
@article{119095, author = {Ladislav, Jr. Mi\v s\'\i k and Tibor \v Z\'a\v cik}, title = {A formula for calculation of metric dimension of converging sequences}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {393-401}, zbl = {0976.54035}, mrnumber = {1732660}, language = {en}, url = {http://dml.mathdoc.fr/item/119095} }
Mišík, Ladislav, Jr.; Žáčik, Tibor. A formula for calculation of metric dimension of converging sequences. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 393-401. http://gdmltest.u-ga.fr/item/119095/
On some properties of the metric dimension, Comment. Math. Univ. Carolinae 31.4 (1990), 781-791. (1990) | MR 1091376
Sur une propriete metrique de la dimension, Annals of Math. 33 (1932), 156-162 Appendix to the Russian translation of ``Dimension Theory'' by W. Hurewitcz and H. Wallman, Izdat. Inostr. Lit. Moscow, 1948. (1932) | MR 1503042
Hausdorff measure, entropy and the independents of small sets, Proc. London Math. Soc. (3) 28 (1974), 700-724. (1974) | MR 0352412
On the complementary intervals of a linear closed sets of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449-459. (1954) | MR 0064849
Fractal dimensions of some sequences of real numbers, Do{ğ}a - Tr. J. of Mathematics 17 (1993), 298-304. (1993) | MR 1255026