In this article we consider the number $R_{k,p}(x)$ of lattice points in $p$-dimensional super spheres with even power $k \ge 4$. We give an asymptotic expansion of the $d$-fold anti-derivative of $R_{k,p}(x)$ for sufficiently large $d$. From this we deduce a new estimation for the error term in the asymptotic representation of $R_{k,p}(x)$ for $p
@article{119094, author = {Ekkehard Kr\"atzel}, title = {Lattice points in super spheres}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {373-391}, zbl = {0993.11050}, mrnumber = {1732659}, language = {en}, url = {http://dml.mathdoc.fr/item/119094} }
Krätzel, Ekkehard. Lattice points in super spheres. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 373-391. http://gdmltest.u-ga.fr/item/119094/
Asymptotic Expansions, Cambridge University Press, Cambridge, 1965. | MR 0168979 | Zbl 1096.41001
The number of lattice points inside and on the surface $|t_1|^k+|t_2|^k+\ldots +|t_n|^k=x$, Math. Nachr. 163 (1993), 257-268. (1993) | MR 1235070
Lattice Points, DVW, Berlin, 1988 and Kluwer, Dordrecht-Boston-London, 1988. | MR 0998378
On the sums of two k-th powers of numbers in residue classes II, Abh. Math. Sem. Hamburg 63 (1993), 87-95. (1993) | MR 1227866
Lattice points in planar domains: Applications of Huxley's Discrete Hardy-Littlewood-Method, Numbertheoretic analysis, Vienna 1988-1989, Springer Lecture Notes 1452 (eds. E. Hlawka and R.F. Tichy) (1990), pp.139-164.
Ein additives Gitterpunktproblem, Doctoral Thesis, FSU Jena, 1989.
Über eine Verallgemeinerung des Kreisproblems, Wiss. Z. FSU Jena, Math.-Naturwiss. R. 31 (1982), 667-681. (1982) | MR 0682557 | Zbl 0497.10038
On the number of lattice points in $x^t+y^t=n^{t/2}$, Pacific J. Math. 8 (1958), 929-940. (1958) | MR 0112883