Lattice points in super spheres
Krätzel, Ekkehard
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 373-391 / Harvested from Czech Digital Mathematics Library

In this article we consider the number $R_{k,p}(x)$ of lattice points in $p$-dimensional super spheres with even power $k \ge 4$. We give an asymptotic expansion of the $d$-fold anti-derivative of $R_{k,p}(x)$ for sufficiently large $d$. From this we deduce a new estimation for the error term in the asymptotic representation of $R_{k,p}(x)$ for $p

Publié le : 1999-01-01
Classification:  11P21
@article{119094,
     author = {Ekkehard Kr\"atzel},
     title = {Lattice points in super spheres},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {373-391},
     zbl = {0993.11050},
     mrnumber = {1732659},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119094}
}
Krätzel, Ekkehard. Lattice points in super spheres. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 373-391. http://gdmltest.u-ga.fr/item/119094/

Copson E.T. Asymptotic Expansions, Cambridge University Press, Cambridge, 1965. | MR 0168979 | Zbl 1096.41001

Hoeppner S.; Krätzel E. The number of lattice points inside and on the surface $|t_1|^k+|t_2|^k+\ldots +|t_n|^k=x$, Math. Nachr. 163 (1993), 257-268. (1993) | MR 1235070

Krätzel E. Lattice Points, DVW, Berlin, 1988 and Kluwer, Dordrecht-Boston-London, 1988. | MR 0998378

Kuba G. On the sums of two k-th powers of numbers in residue classes II, Abh. Math. Sem. Hamburg 63 (1993), 87-95. (1993) | MR 1227866

Müller W.; Nowak W.G. Lattice points in planar domains: Applications of Huxley's Discrete Hardy-Littlewood-Method, Numbertheoretic analysis, Vienna 1988-1989, Springer Lecture Notes 1452 (eds. E. Hlawka and R.F. Tichy) (1990), pp.139-164.

Schmidt-Röh R. Ein additives Gitterpunktproblem, Doctoral Thesis, FSU Jena, 1989.

Schnabel L. Über eine Verallgemeinerung des Kreisproblems, Wiss. Z. FSU Jena, Math.-Naturwiss. R. 31 (1982), 667-681. (1982) | MR 0682557 | Zbl 0497.10038

Wild R.E. On the number of lattice points in $x^t+y^t=n^{t/2}$, Pacific J. Math. 8 (1958), 929-940. (1958) | MR 0112883