A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let $\psi$ be the following statement: ``a perfect $T_3$-space $X$ with no more than $2^{\frak c}$ clopen subsets is connectifiable if and only if no proper nonempty clopen subset of $X$ is feebly compact". In this note we show that neither $\psi$ nor $\neg \psi$ is provable in ZFC.
@article{119089, author = {Alessandro Fedeli and Attilio Le Donne}, title = {An independency result in connectification theory}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {331-334}, zbl = {0976.54018}, mrnumber = {1732654}, language = {en}, url = {http://dml.mathdoc.fr/item/119089} }
Fedeli, Alessandro; Le Donne, Attilio. An independency result in connectification theory. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 331-334. http://gdmltest.u-ga.fr/item/119089/
Connectifying some spaces, Topology Appl. 71 (1996), 203-215. (1996) | MR 1397942
Connectedness and local connectedness of topological groups and extensions, Comment. Math. Univ. Carolinae, to appear. | MR 1756549
On properties characterizing pseudocompact spaces, Proc. A.M.S. 9 (1958), 500-506. (1958) | MR 0097043
The integers and topology, 111-167 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers B.V., North Holland (1984). (1984) | MR 0776622 | Zbl 0561.54004
General Topology, Sigma series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). (1989) | MR 1039321 | Zbl 0684.54001
On locally connected connectifications, Topology Appl. (1998). | Zbl 0928.54018
Connectifications and open components, submitted. | Zbl 0953.54023
Set Theory, North Holland (1980). (1980) | MR 0597342 | Zbl 0443.03021
On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), 505-516. (1976) | MR 0438292 | Zbl 0348.54014
Subspaces of connected spaces, Topology Appl. 68 (1996), 113-131. (1996) | MR 1374077 | Zbl 0855.54025
Nearly realcompact spaces and $T_2$-connectifiability, 358-361 Proceedings of the 8th Prague Topological Symposium (1996). (1996) | MR 1617114
Countably compact and sequentially compact spaces, 569-602 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers B.V., North Holland (1984). (1984) | MR 0776631 | Zbl 0562.54031
Embeddings in connected spaces, Houston J. Math. 19 (1993), 3 469-481. (1993) | MR 1242433 | Zbl 0837.54012
Countably compact spaces and Martin's axiom, Canad. J. Math. 30 (1978), 243-249. (1978) | MR 0467673 | Zbl 0357.54019