This paper completes and improves results of [10]. Let $(X,d_{_X})$, $(Y,d_{_Y})$ be two metric spaces and $G$ be the space of all $Y$-valued continuous functions whose domain is a closed subset of $X$. If $X$ is a locally compact metric space, then the Kuratowski convergence $\tau_{_K}$ and the Kuratowski convergence on compacta $\tau_{_K}^c$ coincide on $G$. Thus if $X$ and $Y$ are boundedly compact metric spaces we have the equivalence of the convergence in the Attouch-Wets topology $\tau_{_{AW}}$ (generated by the box metric of $d_{_X}$ and $d_{_Y}$) and $\tau_{_K}^c$ convergence on $G$, which improves the main result of [10]. In the second part of paper we extend the definition of Hausdorff metric convergence on compacta for general metric spaces $X$ and $Y$ and we show that if $X$ is locally compact metric space, then also $\tau$-convergence and Hausdorff metric convergence on compacta coincide in $G$.
@article{119086, author = {Primo Brandi and Rita Ceppitelli and \v Lubica Hol\'a}, title = {Kuratowski convergence on compacta and Hausdorff metric convergence on compacta}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {309-318}, zbl = {0976.54010}, mrnumber = {1732651}, language = {en}, url = {http://dml.mathdoc.fr/item/119086} }
Brandi, Primo; Ceppitelli, Rita; Holá, Ľubica. Kuratowski convergence on compacta and Hausdorff metric convergence on compacta. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 309-318. http://gdmltest.u-ga.fr/item/119086/
Topologies on Closed and Closed Convex Sets, Kluwer, 1993. | MR 1269778 | Zbl 0792.54008
Esistenza, unicitá e dipendenza continua per equazioni differenziali in una struttura ereditaria, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 357-363. (1987) | MR 0937975
Existence, uniqueness and continuous dependence for hereditary differential equations, J. Diff. Equations 81 (1989), 317-339. (1989) | MR 1016086 | Zbl 0709.34062
A new graph topology. Connections with compact open topology, Appl. Analysis 53 (1994), 185-196. (1994) | MR 1379407
A new graph topology intended for functional differential equations, Atti Sem. Mat. Univ. Modena 54 (1996), 43-52. (1996) | MR 1405228 | Zbl 0890.54010
A hypertopology intended for functional differential equations, Appl. Analysis 67 (1997), 73-88. (1997) | MR 1609874 | Zbl 0886.54009
Topological properties of a new graph topology, J. Convex Anal. 5 (1998), 2 1-12. (1998) | MR 1713949
Differential equations with hereditary structure induced by a Volterra type property, preprint. | MR 1821774 | Zbl 0988.34049
The Attouch-Wets topology and a characterization of normable linear spaces, Bull. Austral. Math. Soc. 44 (1991), 11-18. (1991) | MR 1120389
Attouch-Wets convergence and Kuratowski convergence on compact sets, Comment. Math. Univ. Carolinae 36 (1995), 551-562. (1995) | MR 1364496 | Zbl 0844.54010
Kuratowski convergence on compact sets, Atti Sem. Mat. Fis. Univ. Modena 39 (1992), 381-390. (1992) | MR 1200296 | Zbl 0770.54016