Equation de Navier-Stokes avec densité et viscosité variables dans l'espace critique
Abidi, Hammadi
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 537-586 / Harvested from Project Euclid
In this article, we show that the Navier-Stokes system with variable density and viscosity is locally well-posed in the Besov space $$ \dot B^{\frac{N}{p}}_{p\,1}(\R^N)\times\big(\dot B^{\frac{N}{p}-1}_{p\,1}(\R^N)\big)^N, $$ for $1 < p\leq N$ when the initial density approaches a strictly positive constant. This result generalizes the work by R. Danchin for the case where the viscosity is constant and $p=2$ (see [Danchin, R.: Density-dependent incompressible viscous fluids in critical spaces. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 1311-1334.]). Moreover, we prove existence and uniqueness in the Sobolev space\arriba{2} $$ H^{\frac{N}{2}+\alpha}(\R^N)\times\big(H^{\frac{N}{2}-1+\alpha}(\R^N)\big)^N $$ for $\alpha>0,$ generalizing R. Danchin's result for the case where viscosity is constant (see [Danchin, R.: Local and global well-posedness results for flows of inhomogeneous viscous fluids. Adv. Differential Equations 9 (2004), 353-386.]).
Publié le : 2007-04-14
Classification:  inhomogeneous fluid,  existence,  uniqueness,  35Q30,  35B30,  76D03,  76D05
@article{1190831221,
     author = {Abidi, Hammadi},
     title = {Equation de Navier-Stokes avec densit\'e
et viscosit\'e variables dans l'espace critique},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 537-586},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1190831221}
}
Abidi, Hammadi. Equation de Navier-Stokes avec densité
et viscosité variables dans l'espace critique. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  537-586. http://gdmltest.u-ga.fr/item/1190831221/