On a Parabolic Symmetry Problem
Lewis, John L. ; Nyström, Kaj
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 513-536 / Harvested from Project Euclid
In this paper we prove a symmetry theorem for the Green function associated to the heat equation in a certain class of bounded domains $\Omega\subset\mathbb{R}^{n+1}$. For $T>0$, let $\Omega_T=\Omega\cap[\mathbb{R}^n\times (0,T)]$ and let $G$ be the Green function of $\Omega_T$ with pole at $(0,0)\in\partial_p\Omega_T$. Assume that the adjoint caloric measure in $\Omega_T$ defined with respect to $(0,0)$, $\hat\omega$, is absolutely continuous with respect to a certain surface measure, $\sigma$, on $\partial_p\Omega_T$. Our main result states that if $$\frac {d\hat\omega}{d\sigma}(X,t)=\lambda\frac {|X|}{2t}$$ for all $(X,t)\in \partial_p\Omega_T\setminus\{(X,t): t=0\}$ and for some $\lambda>0$, then $\partial_p\Omega_T\subseteq\{(X,t):W(X,t)=\lambda\}$ where $W(X,t)$ is the heat kernel and $G=W-\lambda$ in $\Omega_T$. This result has previously been proven by Lewis and Vogel under stronger assumptions on $\Omega$.
Publié le : 2007-04-14
Classification:  heat equation,  caloric measure,  Green's function,  symmetry theorem,  free boundary,  35K05
@article{1190831220,
     author = {Lewis, John L. and Nystr\"om, Kaj},
     title = {On a Parabolic Symmetry Problem},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 513-536},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1190831220}
}
Lewis, John L.; Nyström, Kaj. On a Parabolic Symmetry Problem. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  513-536. http://gdmltest.u-ga.fr/item/1190831220/