Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/SansSerif/Regular/Main.js
On a Parabolic Symmetry Problem
Lewis, John L. ; Nyström, Kaj
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 513-536 / Harvested from Project Euclid
In this paper we prove a symmetry theorem for the Green function associated to the heat equation in a certain class of bounded domains \Omega\subset\mathbb{R}^{n+1}. For T>0, let \Omega_T=\Omega\cap[\mathbb{R}^n\times (0,T)] and let G be the Green function of \Omega_T with pole at (0,0)\in\partial_p\Omega_T. Assume that the adjoint caloric measure in \Omega_T defined with respect to (0,0), \hat\omega, is absolutely continuous with respect to a certain surface measure, \sigma, on \partial_p\Omega_T. Our main result states that if \frac {d\hat\omega}{d\sigma}(X,t)=\lambda\frac {|X|}{2t}
for all (X,t)\in \partial_p\Omega_T\setminus\{(X,t): t=0\} and for some \lambda>0, then \partial_p\Omega_T\subseteq\{(X,t):W(X,t)=\lambda\} where W(X,t) is the heat kernel and G=W-\lambda in \Omega_T. This result has previously been proven by Lewis and Vogel under stronger assumptions on \Omega.
Publié le : 2007-04-14
Classification:  heat equation,  caloric measure,  Green's function,  symmetry theorem,  free boundary,  35K05
@article{1190831220,
     author = {Lewis, John L. and Nystr\"om, Kaj},
     title = {On a Parabolic Symmetry Problem},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 513-536},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1190831220}
}
Lewis, John L.; Nyström, Kaj. On a Parabolic Symmetry Problem. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  513-536. http://gdmltest.u-ga.fr/item/1190831220/