In the Heisenberg group ${\mathbb H}$
(endowed with its Carnot-Carathéodory structure), we prove that a
compact set $E \subset {\mathbb H}$ which satisfies an analog of
Peter Jones' geometric lemma is contained in a rectifiable curve.
This quantitative condition is given in terms of Heisenberg $\beta$
numbers which measure how well the set $E$ is approximated by
Heisenberg straight lines.
@article{1190831218,
author = {Ferrari, Fausto and Franchi , Bruno and Pajot, Herv\'e},
title = {The Geometric Traveling Salesman Problem in the Heisenberg Group},
journal = {Rev. Mat. Iberoamericana},
volume = {23},
number = {1},
year = {2007},
pages = { 437-480},
language = {en},
url = {http://dml.mathdoc.fr/item/1190831218}
}
Ferrari, Fausto; Franchi , Bruno; Pajot, Hervé. The Geometric Traveling Salesman Problem in the Heisenberg Group. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp. 437-480. http://gdmltest.u-ga.fr/item/1190831218/