Integration Operators on Bergman Spaces with exponential weight
Dostanić, Milutin R.
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 421-436 / Harvested from Project Euclid
We study operators of the form $T_{g}f\left( z\right) =\int\nolimits_{0}^{z}f\left( \xi \right) \,g^{\prime }\left( \xi \right) \,d\left( \xi \right) $ ($g$ is an analytic function unity disc) on weighted Bergman spaces $L_{a}^{p}\left( w\right) $ of the unit disc where symbol $g$ is analytic function on the disc. For the case of $$ w(r) =\exp \Big( \frac{-a}{( 1-r)^{\beta }}\Big)\qquad \left( a>0, 0<\beta \leq 1\right) $$ it is shown that operator $T_{g}$ is bounded (compact) on $L_{a}^{2}\left( w\right) $ if and only if $\left( 1-\left\vert z\right\vert \right)^{\beta +1}\left\vert g^{\prime }\left( z\right) \right\vert =O\left( 1\right) \left( =o\left( 1\right) \right) $ as $\left\vert z\right\vert \rightarrow 1-$, thus solving a problem formulated in [Aleman, A. and Siskakis, A.G.: Integration Operators on Bergman Spaces. Indiana Univ. Math. J. 46 (1997), no. 2, 337-356.].
Publié le : 2007-04-14
Classification:  weighted Bergman's space,  radial weight function,  tauberian theorem of Ingham,  47B38
@article{1190831217,
     author = {Dostani\'c, Milutin R.},
     title = {Integration Operators on Bergman Spaces with exponential weight},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 421-436},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1190831217}
}
Dostanić, Milutin R. Integration Operators on Bergman Spaces with exponential weight. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  421-436. http://gdmltest.u-ga.fr/item/1190831217/