Group actions on Jacobian varieties
Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, p. 397-420 / Harvested from Project Euclid
Consider a finite group $G$ acting on a Riemann surface $S$, and the associated branched Galois cover $\pi_G:S \to Y=S/G$. We introduce the concept of \emph{geometric signature} for the action of $G$, and we show that it captures much information: the geometric structure of the lattice of intermediate covers, the isotypical decomposition of the rational representation of the group $G$ acting on the Jacobian variety $JS$ of $S$, and the dimension of the subvarieties of the isogeny decomposition of $JS$. We also give a version of Riemann's existence theorem, adjusted to the present setting.
Publié le : 2007-04-14
Classification:  Jacobian varieties,  Riemann surfaces,  group actions,  Riemann's existence theorem,  geometric signature,  14H40,  14L30
@article{1190831216,
     author = {Rojas
,  
Anita M.},
     title = {Group actions on Jacobian varieties},
     journal = {Rev. Mat. Iberoamericana},
     volume = {23},
     number = {1},
     year = {2007},
     pages = { 397-420},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1190831216}
}
Rojas
,  
Anita M. Group actions on Jacobian varieties. Rev. Mat. Iberoamericana, Tome 23 (2007) no. 1, pp.  397-420. http://gdmltest.u-ga.fr/item/1190831216/