Let $L$ be an Archimedean Riesz space with a weak order unit $u$. A sufficient condition under which Dedekind [$\sigma$-]completeness of the principal ideal $A_{u}$ can be lifted to $L$ is given (Lemma). This yields a concise proof of two theorems of Luxemburg and Zaanen concerning projection properties of $C(X)$-spaces. Similar results are obtained for the Riesz spaces $B_{n}(T)$, $n=1, 2, \dots$, of all functions of the $n$th Baire class on a metric space $T$.
@article{119083,
author = {Marek W\'ojtowicz},
title = {A short proof on lifting of projection properties in Riesz spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
volume = {40},
year = {1999},
pages = {277-278},
zbl = {0983.46006},
mrnumber = {1732648},
language = {en},
url = {http://dml.mathdoc.fr/item/119083}
}
Wójtowicz, Marek. A short proof on lifting of projection properties in Riesz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 277-278. http://gdmltest.u-ga.fr/item/119083/
Introduction to Set Theory and Topology, Polish Scientific Publishers, Warszawa, 1997. | MR 0346724 | Zbl 1081.54501
Set Theory, Polish Scientific Publishers, Warszawa, 1996. | MR 0485384 | Zbl 0337.02034
Riesz Spaces I, North-Holland, Amsterdam, 1971.