We give a characterization of $K$-weakly precompact sets in terms of uniform Gateaux differentiability of certain continuous convex functions.
@article{119082, author = {Minoru Matsuda}, title = {A remark on localized weak precompactness in Banach spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {271-276}, zbl = {0983.46011}, mrnumber = {1732647}, language = {en}, url = {http://dml.mathdoc.fr/item/119082} }
Matsuda, Minoru. A remark on localized weak precompactness in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 271-276. http://gdmltest.u-ga.fr/item/119082/
Weak precompactness and the weak RNP, Bull. Polish Acad. Sci. Math. 37 (1989), 443-452. (1989) | MR 1101905 | Zbl 0767.46011
Separably related sets and the Radon-Nikodym property, Illinois J. Math. 29 (1985), 229-247. (1985) | MR 0784521 | Zbl 0546.46009
A characterization of Pettis sets in terms of the Bourgain property, Math. Japon. 41 (1995), 433-439. (1995) | MR 1326976 | Zbl 0842.46012
On localized weak precompactness in Banach spaces, Publ. RIMS, Kyoto Univ. 32 (1996), 473-491. (1996) | MR 1409798 | Zbl 0863.46010
A characterization of Banach spaces containing $l_1$, Proc. Nat. Acad. Sci. 71 (1974), 2411-2413. (1974) | MR 0358307 | Zbl 0297.46013