We investigate the situation when the inner mapping group of a commutative loop is of order $2p$, where $p=4t+3$ is a prime number, and we show that then the loop is solvable.
@article{119076, author = {Kari Myllyl\"a and Markku Niemenmaa}, title = {On the solvability of commutative loops and their multiplication groups}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {209-213}, zbl = {0983.20011}, mrnumber = {1732641}, language = {en}, url = {http://dml.mathdoc.fr/item/119076} }
Myllylä, Kari; Niemenmaa, Markku. On the solvability of commutative loops and their multiplication groups. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 209-213. http://gdmltest.u-ga.fr/item/119076/
Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245-354. (1946) | MR 0017288 | Zbl 0061.02201
Finite Groups, Harper & Row, New York, 1968. | MR 0231903 | Zbl 0695.20014
A remark on finite groups, Proc. Amer. Math. Soc. 9 (1958), 255-257. (1958) | MR 0093542 | Zbl 0089.01601
Groups and Ggeometry, Oxford University Press, 1994. | MR 1283590
Transversals, commutators and solvability in finite groups, Bollettino U.M.I. (7) 9-A (1995), 203-208. (1995) | MR 1324621 | Zbl 0837.20026
On loops which have dihedral $2$-groups as inner mapping groups, Bull. Australian Math. Soc. 52 (1995), 153-160. (1995) | MR 1344268 | Zbl 0838.20080
On connected transversals to subgroups whose order is a product of two primes, European J. Comb. 18 (1997), 915-919. (1997) | MR 1485376 | Zbl 0889.20044
On multiplication groups of loops, J. Algebra 135 (1990), 112-122. (1990) | MR 1076080 | Zbl 0706.20046
On connected transversals to abelian subgroups, Bull. Australian Math. Soc. 49 (1994), 121-128. (1994) | MR 1262682 | Zbl 0799.20020
On subgroups, transversals and commutators, in Proceeding of the Groups Galway/St. Andrews 1993, London Math. Soc. Lecture Notes Series 212 (1995), pp.476-481. | MR 1337289 | Zbl 0862.20023
Solvable groups and loops, J. Algebra 180 (1996), 862-876. (1996) | MR 1379214 | Zbl 0853.20050