Differentially trivial left Noetherian rings
Artemovych, O. D.
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999), p. 201-208 / Harvested from Czech Digital Mathematics Library

We characterize left Noetherian rings which have only trivial derivations.

Publié le : 1999-01-01
Classification:  12H05,  13N05,  16A12,  16A72,  16D70,  16U70,  16W25
@article{119075,
     author = {O. D. Artemovych},
     title = {Differentially trivial left Noetherian rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {40},
     year = {1999},
     pages = {201-208},
     zbl = {0983.16017},
     mrnumber = {1732640},
     language = {en},
     url = {http://dml.mathdoc.fr/item/119075}
}
Artemovych, O. D. Differentially trivial left Noetherian rings. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 201-208. http://gdmltest.u-ga.fr/item/119075/

Komarnytskyi M.Ya.; Artemovych O.D. On the ideally differential rings (in Ukrainian), Herald of Lviv University (1983), 21 35-40. (1983) | MR 1030517

Artemovych O.D. Ideally differential and perfect rigid rings (in Ukrainian), DAN UkrSSR (1985), 4 3-5. (1985) | MR 0796364

Nowicki A. Differential rings in which any ideal is differential, Acta Universitatis Carolinae (1985), 26 3 43-49. (1985) | MR 0830268 | Zbl 0596.13011

Mcconnel J.C.; Robson J.C. Noncommutative Noetherian Rings, Chictester e.a.: J.Wiley and Sons (1987). (1987) | MR 0934572

Bourbaki N. Algebre commutative, Hermann, Paris (1961). (1961) | Zbl 0119.03603

Artemovych O.D. Differentially trivial and rigid rings of finite rank, preprint. | MR 1684503 | Zbl 0931.16018

Zariski O.; Samuel P. Commutative Algebra, I D. van Nostrand C., Princeton (1960). (1960) | MR 0120249 | Zbl 0121.27801

Atiyah M.F.; Macdonald I.G. Introduction to Commutative Algebra, Addison-Wesley P.C., Reading (1969). (1969) | MR 0242802 | Zbl 0175.03601

Lambek J. Lectures on Rings and Modules, Blaisdell Publ. Com., Waltham, Toronto, London (1966). (1966) | MR 0206032 | Zbl 0143.26403