We characterize left Noetherian rings which have only trivial derivations.
@article{119075, author = {O. D. Artemovych}, title = {Differentially trivial left Noetherian rings}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {40}, year = {1999}, pages = {201-208}, zbl = {0983.16017}, mrnumber = {1732640}, language = {en}, url = {http://dml.mathdoc.fr/item/119075} }
Artemovych, O. D. Differentially trivial left Noetherian rings. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) pp. 201-208. http://gdmltest.u-ga.fr/item/119075/
On the ideally differential rings (in Ukrainian), Herald of Lviv University (1983), 21 35-40. (1983) | MR 1030517
Ideally differential and perfect rigid rings (in Ukrainian), DAN UkrSSR (1985), 4 3-5. (1985) | MR 0796364
Differential rings in which any ideal is differential, Acta Universitatis Carolinae (1985), 26 3 43-49. (1985) | MR 0830268 | Zbl 0596.13011
Noncommutative Noetherian Rings, Chictester e.a.: J.Wiley and Sons (1987). (1987) | MR 0934572
Algebre commutative, Hermann, Paris (1961). (1961) | Zbl 0119.03603
Differentially trivial and rigid rings of finite rank, preprint. | MR 1684503 | Zbl 0931.16018
Commutative Algebra, I D. van Nostrand C., Princeton (1960). (1960) | MR 0120249 | Zbl 0121.27801
Introduction to Commutative Algebra, Addison-Wesley P.C., Reading (1969). (1969) | MR 0242802 | Zbl 0175.03601
Lectures on Rings and Modules, Blaisdell Publ. Com., Waltham, Toronto, London (1966). (1966) | MR 0206032 | Zbl 0143.26403